organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 June 2008; accepted 8 July 2008; online 12 July 2008)

The title compound, C15H12O2S, was prepared by the oxidation of 2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran system. The phenyl ring makes a dihedral angle of 78.76 (4)° with the benzofuran mean plane. The crystal structure is stabilized by ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 4.017 (3) Å]. In addition, the crystal structure exhibits inter­molecular C—H⋯π and C—H⋯O inter­actions.

Related literature

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O2S

  • Mr = 256.31

  • Monoclinic, P 21 /c

  • a = 12.946 (2) Å

  • b = 9.466 (1) Å

  • c = 10.294 (1) Å

  • β = 103.887 (2)°

  • V = 1224.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 (2) K

  • 0.60 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6763 measured reflections

  • 2405 independent reflections

  • 2192 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.11

  • 2405 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.59 3.387 (2) 142
C15—H15C⋯O2ii 0.98 2.42 3.232 (2) 141
C12—H12⋯Cg2iii 0.95 3.20 3.629 (3) 152
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1. Cg2 is the centroid of the C2–C7 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 3-phenylsulfinyl-1-benzofuran analogues, viz. 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007) and 2,4,6,7-tetramethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 2-methyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.008 (1) ° from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [78.76 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the furan and the benzene rings of neighbouring molecules. The Cg1···Cg2iv distance is 4.017 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2—C7 benzene ring, respectively, symmetry code as in Fig. 2). The crystal packing is further stabilized by C—H···π interactions between a phenyl H atom of the phenylsulfinyl substitutent and the benzene ring of the benzofuran unit, with a C12-H12···Cg2iii separation of 3.20 Å (Fig. 2 and Table 1; Cg2 is the centroid of the C2-C7 benzene ring, symmetry code as in Fig. 2). Additionally, intermolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar substituted benzofuran compounds, see: Choi et al. (2007, 2008). Cg2 is the centroid of the C2–C7 benzene ring.

Experimental top

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-methyl-3-phenylsulfanyl-1-benzofuran (240 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 417–418 K; Rf = 0.71 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.77 (s, 3H), 7.06 (t, J = 7.80 Hz, 1H), 7.19–7.23 (m, 2H), 7.39–7.52 (m, 4H), 7.68 (d, J = 7.44 Hz, 2H); EI—MS 256 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, -y + 3/2, z + 1/2; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) x + 1, y, z.]
2-Methyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C15H12O2SF(000) = 536
Mr = 256.31Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ybcCell parameters from 5415 reflections
a = 12.946 (2) Åθ = 2.7–28.2°
b = 9.466 (1) ŵ = 0.25 mm1
c = 10.294 (1) ÅT = 173 K
β = 103.887 (2)°Block, colorless
V = 1224.6 (3) Å30.60 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2192 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
Detector resolution: 10.0 pixels mm-1h = 1515
ϕ and ω scansk = 117
6763 measured reflectionsl = 1212
2405 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.4838P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C15H12O2SV = 1224.6 (3) Å3
Mr = 256.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.946 (2) ŵ = 0.25 mm1
b = 9.466 (1) ÅT = 173 K
c = 10.294 (1) Å0.60 × 0.40 × 0.30 mm
β = 103.887 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2192 reflections with I > 2σ(I)
6763 measured reflectionsRint = 0.038
2405 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
2405 reflectionsΔρmin = 0.52 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.21943 (3)0.67373 (4)0.24290 (4)0.02584 (14)
O10.42892 (9)0.63644 (14)0.58590 (11)0.0324 (3)
O20.23114 (10)0.57743 (14)0.13205 (11)0.0372 (3)
C10.30363 (12)0.61722 (17)0.39339 (15)0.0239 (3)
C20.31131 (11)0.48127 (17)0.45930 (14)0.0244 (3)
C30.26168 (13)0.35014 (17)0.43207 (16)0.0287 (3)
H30.20890.33410.35170.034*
C40.29212 (14)0.24396 (19)0.52657 (18)0.0353 (4)
H40.25900.15400.51070.042*
C50.37026 (15)0.2664 (2)0.64428 (18)0.0394 (4)
H50.38850.19160.70710.047*
C60.42179 (14)0.3951 (2)0.67166 (17)0.0379 (4)
H60.47600.41040.75070.045*
C70.38969 (12)0.49963 (19)0.57741 (15)0.0291 (4)
C80.37502 (12)0.70491 (18)0.47218 (15)0.0277 (3)
C90.09419 (12)0.62970 (16)0.27953 (14)0.0235 (3)
C100.02207 (13)0.55290 (18)0.18570 (16)0.0317 (4)
H100.04120.51680.10860.038*
C110.07920 (14)0.5289 (2)0.20534 (19)0.0374 (4)
H110.12960.47650.14120.045*
C120.10656 (13)0.58118 (19)0.31772 (19)0.0362 (4)
H120.17590.56510.33060.043*
C130.03302 (14)0.65707 (19)0.41178 (18)0.0359 (4)
H130.05190.69210.48940.043*
C140.06790 (13)0.68229 (17)0.39348 (16)0.0295 (4)
H140.11830.73470.45780.035*
C150.40351 (14)0.85446 (19)0.45966 (19)0.0364 (4)
H15A0.37070.88800.36910.055*
H15B0.48100.86330.47660.055*
H15C0.37780.91130.52500.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0309 (2)0.0267 (2)0.0210 (2)0.00105 (15)0.00834 (16)0.00241 (14)
O10.0259 (6)0.0415 (7)0.0281 (6)0.0028 (5)0.0033 (5)0.0067 (5)
O20.0444 (7)0.0478 (8)0.0227 (6)0.0018 (6)0.0143 (5)0.0049 (5)
C10.0239 (7)0.0266 (8)0.0227 (7)0.0017 (6)0.0083 (6)0.0008 (6)
C20.0223 (7)0.0298 (8)0.0225 (7)0.0032 (6)0.0082 (6)0.0006 (6)
C30.0291 (8)0.0281 (8)0.0300 (8)0.0009 (6)0.0094 (6)0.0002 (6)
C40.0382 (9)0.0290 (9)0.0431 (9)0.0080 (7)0.0184 (8)0.0058 (7)
C50.0419 (10)0.0439 (11)0.0363 (9)0.0196 (8)0.0171 (8)0.0148 (8)
C60.0333 (9)0.0535 (11)0.0260 (8)0.0157 (8)0.0056 (7)0.0036 (8)
C70.0244 (7)0.0381 (9)0.0260 (8)0.0029 (7)0.0082 (6)0.0034 (7)
C80.0234 (7)0.0340 (9)0.0278 (8)0.0023 (6)0.0103 (6)0.0051 (7)
C90.0270 (8)0.0215 (7)0.0211 (7)0.0020 (6)0.0041 (6)0.0024 (6)
C100.0346 (8)0.0323 (9)0.0257 (8)0.0012 (7)0.0026 (6)0.0051 (7)
C110.0301 (9)0.0344 (9)0.0422 (9)0.0027 (7)0.0023 (7)0.0063 (8)
C120.0264 (8)0.0342 (9)0.0480 (10)0.0003 (7)0.0086 (7)0.0015 (8)
C130.0353 (9)0.0392 (10)0.0358 (9)0.0014 (7)0.0141 (7)0.0051 (7)
C140.0303 (8)0.0317 (9)0.0263 (8)0.0020 (6)0.0062 (6)0.0061 (6)
C150.0356 (9)0.0336 (9)0.0441 (10)0.0114 (7)0.0175 (8)0.0116 (8)
Geometric parameters (Å, º) top
S—O21.496 (1)C6—H60.9500
S—C11.750 (2)C8—C151.476 (2)
S—C91.800 (2)C9—C101.378 (2)
O1—C81.373 (2)C9—C141.390 (2)
O1—C71.386 (2)C10—C111.392 (2)
C1—C81.357 (2)C10—H100.9500
C1—C21.447 (2)C11—C121.380 (3)
C2—C31.395 (2)C11—H110.9500
C2—C71.395 (2)C12—C131.385 (3)
C3—C41.388 (2)C12—H120.9500
C3—H30.9500C13—C141.385 (2)
C4—C51.396 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.385 (3)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.378 (2)C15—H15C0.9800
O2—S—C1109.46 (7)C1—C8—C15133.1 (2)
O2—S—C9106.26 (7)O1—C8—C15116.1 (1)
C1—S—C998.33 (7)C10—C9—C14121.2 (2)
C8—O1—C7106.5 (1)C10—C9—S117.9 (1)
C8—C1—C2107.7 (1)C14—C9—S120.6 (1)
C8—C1—S122.2 (1)C9—C10—C11119.2 (2)
C2—C1—S130.2 (1)C9—C10—H10120.4
C3—C2—C7119.2 (2)C11—C10—H10120.4
C3—C2—C1136.1 (1)C12—C11—C10120.2 (2)
C7—C2—C1104.6 (1)C12—C11—H11119.9
C4—C3—C2117.6 (2)C10—C11—H11119.9
C4—C3—H3121.2C11—C12—C13120.0 (2)
C2—C3—H3121.2C11—C12—H12120.0
C3—C4—C5121.5 (2)C13—C12—H12120.0
C3—C4—H4119.2C14—C13—C12120.5 (2)
C5—C4—H4119.2C14—C13—H13119.8
C6—C5—C4121.6 (2)C12—C13—H13119.8
C6—C5—H5119.2C13—C14—C9118.9 (2)
C4—C5—H5119.2C13—C14—H14120.6
C7—C6—C5116.1 (2)C9—C14—H14120.6
C7—C6—H6122.0C8—C15—H15A109.5
C5—C6—H6122.0C8—C15—H15B109.5
C6—C7—O1125.6 (2)H15A—C15—H15B109.5
C6—C7—C2123.9 (2)C8—C15—H15C109.5
O1—C7—C2110.5 (1)H15A—C15—H15C109.5
C1—C8—O1110.8 (2)H15B—C15—H15C109.5
O2—S—C1—C8126.3 (1)C1—C2—C7—O10.1 (2)
C9—S—C1—C8123.2 (1)C2—C1—C8—O10.3 (2)
O2—S—C1—C255.6 (2)S—C1—C8—O1178.2 (1)
C9—S—C1—C255.0 (2)C2—C1—C8—C15179.5 (2)
C8—C1—C2—C3179.9 (2)S—C1—C8—C151.0 (3)
S—C1—C2—C31.7 (3)C7—O1—C8—C10.3 (2)
C8—C1—C2—C70.2 (2)C7—O1—C8—C15179.6 (1)
S—C1—C2—C7178.1 (1)O2—S—C9—C1017.0 (2)
C7—C2—C3—C41.1 (2)C1—S—C9—C10130.2 (1)
C1—C2—C3—C4178.7 (2)O2—S—C9—C14168.5 (1)
C2—C3—C4—C50.6 (2)C1—S—C9—C1455.3 (1)
C3—C4—C5—C60.7 (3)C14—C9—C10—C110.6 (2)
C4—C5—C6—C71.3 (2)S—C9—C10—C11173.9 (1)
C5—C6—C7—O1178.7 (1)C9—C10—C11—C120.2 (3)
C5—C6—C7—C20.8 (2)C10—C11—C12—C130.3 (3)
C8—O1—C7—C6179.6 (2)C11—C12—C13—C140.6 (3)
C8—O1—C7—C20.1 (2)C12—C13—C14—C90.3 (3)
C3—C2—C7—C60.4 (2)C10—C9—C14—C130.3 (2)
C1—C2—C7—C6179.4 (2)S—C9—C14—C13174.0 (1)
C3—C2—C7—O1179.9 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.593.387 (2)142
C15—H15C···O2ii0.982.423.232 (2)141
C12—H12···Cg2iii0.953.203.629 (3)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O2S
Mr256.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.946 (2), 9.466 (1), 10.294 (1)
β (°) 103.887 (2)
V3)1224.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.60 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6763, 2405, 2192
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.11
No. of reflections2405
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.52

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.593.387 (2)141.7
C15—H15C···O2ii0.982.423.232 (2)140.5
C12—H12···Cg2iii0.953.203.629 (3)152.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds