organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(diiso­propyl­ammonium) hydrogensulfate sulfate

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2008; accepted 16 July 2008; online 23 July 2008)

The cations and anions of the title salt, 3C6H16N+·HSO4·SO42−, are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The hydrogensulfate ion, with a single S—O(H) bond of 1.563 (2) Å, forms a short O—H⋯O hydrogen bond [O⋯O = 2.609 (2) Å] to the sulfate ion. The hydrogensulfate ion accepts two hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to four cations. The sulfate ion is disordered approximately equally over two sites related by rotation around one of the O—S bonds.

Related literature

For the crystal structures of other hydrogensulfate–sulfate salts, see: Anderson et al. (2006[Anderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.]); Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]); Kang et al. (2005[Kang, S. O., Hossain, Md. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328-330.]); Novozhilova et al. (1987[Novozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel'skii, V. K. (1987). Zh. Strukt. Khim. (Russ.), 28, 84-86.]); Sridhar et al. (2001[Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o558-o560.]); Warden et al. (2004[Warden, A. C., Warren, M., Hearn, M. T. W. & Spiccia, L. (2004). New J. Chem. 28, 1301-1308.]). For the synthesis of ammonium sulfates, see: Jordanovska et al. (2000[Jordanovska, V., Boyanov, B. & Naumov, P. (2000). J. Therm. Anal. Calorim. 62, 267-275.]).

[Scheme 1]

Experimental

Crystal data
  • 3C6H16N+·HSO4·SO42−

  • Mr = 499.72

  • Monoclinic, P 21 /c

  • a = 8.6178 (6) Å

  • b = 16.741 (1) Å

  • c = 19.819 (1) Å

  • β = 101.973 (5)°

  • V = 2797.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Stoe IPDSII imaging plate diffractometer

  • Absorption correction: analytical (X-SHAPE; Stoe & Cie, 2003[Stoe & Cie (2003). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.91, Tmax = 0.94

  • 16154 measured reflections

  • 6311 independent reflections

  • 4905 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.06

  • 6311 reflections

  • 336 parameters

  • 94 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O4 0.86 (1) 1.76 (1) 2.609 (2) 174 (4)
N1—H1N1⋯O1 0.86 (1) 1.76 (1) 2.585 (5) 159 (3)
N1—H1N2⋯O6i 0.85 (1) 2.02 (1) 2.874 (2) 176 (3)
N2—H2N2⋯O4 0.85 (1) 2.10 (1) 2.929 (2) 166 (2)
N2—H2N1⋯O2ii 0.85 (1) 1.85 (1) 2.695 (6) 179 (3)
N2—H2N1⋯O2′ii 0.85 (1) 2.02 (2) 2.855 (8) 166 (3)
N3—H3N1⋯O3 0.86 (1) 1.89 (1) 2.738 (8) 174 (2)
N3—H3N1⋯O3′ 0.86 (1) 1.88 (1) 2.711 (7) 162 (2)
N3—H3N2⋯O5iii 0.86 (1) 2.00 (1) 2.819 (2) 159 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Disubstituted ammonium sulfates are used in the synthesis of double salts with other metal sulfates (Jordanovska et al., 2000). The reaction of diisopropylamine with sulfuric acid yielded the expected compound as a double sulfate with diisopropylammonium hydrogensulfate ( Fig. 1). A small number of such double salts are known (Anderson et al., 2006; Banerjee & Murugavel, 2004; Kang et al., 2005; Novozhilova et al., 1987; Sridhar et al., 2001; Warden et al., 2004). In the title compound, the cations and anions are linked by N–H···O and O–H···O hydrogen bonds into three-dimensional network structure. The sulfate ion is disordered over two sites in an "umbrella" type of disorder (only three of the four oxygen atoms are disordered).

Related literature top

For the crystal structures of other hydrogensulfate–sulfate salts, see: Anderson et al. (2006); Banerjee & Murugavel (2004); Kang et al. (2005); Novozhilova et al. (1987); Sridhar et al. (2001); Warden et al. (2004). For the synthesis of ammonium sulfates, see: Jordanovska et al. (2000).

Experimental top

Following the method of Jordanovska et al. (2000), diisopropylamine (1 ml, 7.1 mmol) was dissolved in chloroform (10 ml) and concentrated sulfuric acid was added dropwise at 273 K until a white precipitate was formed. The precipitate was collected and recrystallized from water.

Refinement top

The sulfate ion is disordered over two positions related by rotation around the S1-O4 bond. For this ion, all S–O distances were restrained to be equal within 0.01 Å. Similar restraints were were imposed on O···O distances within this ion.

Carbon-bound hydrogen atoms were placed in calculated positions (C–H 0.96 – 0.98 Å), and were included in refinement in the riding model approximation, with U(H) set to 1.2-1.5 times Ueq(C). Oxygen and nitrogen-bound hydrogen atoms were located in a difference Fourier map, and were refined with a distance restraint (O,N)–H= 0.85±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: X-RED (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [(C6H16N)3]3 [HSO4] [SO4]; displacement ellipsoids are drawn at the 50% probablity level and H atoms are drawn as spheres of arbitrary radii. Disorder in the sulfate ion is shown.
Tris(diisopropylammonium) hydrogensulfate sulfate top
Crystal data top
3C6H16N+·HSO4·SO42F(000) = 1096
Mr = 499.72Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4365 reflections
a = 8.6178 (6) Åθ = 2.4–27.5°
b = 16.741 (1) ŵ = 0.23 mm1
c = 19.819 (1) ÅT = 295 K
β = 101.973 (5)°Block, colorless
V = 2797.2 (3) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS-II imaging plate
diffractometer
6311 independent reflections
Radiation source: medium-focus sealed tube4905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Rotation method scansθmax = 27.5°, θmin = 2.4°
Absorption correction: analytical
(X-SHAPE; Stoe & Cie, 2003)
h = 1111
Tmin = 0.91, Tmax = 0.94k = 2121
16154 measured reflectionsl = 2515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.054P)2 + 0.953P]
where P = (Fo2 + 2Fc2)/3
6311 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.26 e Å3
94 restraintsΔρmin = 0.23 e Å3
Crystal data top
3C6H16N+·HSO4·SO42V = 2797.2 (3) Å3
Mr = 499.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6178 (6) ŵ = 0.23 mm1
b = 16.741 (1) ÅT = 295 K
c = 19.819 (1) Å0.40 × 0.30 × 0.25 mm
β = 101.973 (5)°
Data collection top
Stoe IPDS-II imaging plate
diffractometer
6311 independent reflections
Absorption correction: analytical
(X-SHAPE; Stoe & Cie, 2003)
4905 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.94Rint = 0.035
16154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04994 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
6311 reflectionsΔρmin = 0.23 e Å3
336 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69023 (5)0.61641 (3)0.59691 (2)0.03414 (13)
S20.50949 (5)0.60829 (3)0.81272 (3)0.03843 (14)
O10.6113 (17)0.6922 (6)0.5791 (8)0.093 (4)0.49 (3)
O20.6440 (16)0.5588 (7)0.5417 (4)0.068 (3)0.49 (3)
O30.8606 (6)0.6263 (9)0.6126 (4)0.072 (3)0.49 (3)
O40.63401 (18)0.58408 (10)0.65737 (8)0.0505 (4)
O1'0.5800 (8)0.6754 (5)0.5608 (5)0.082 (3)0.51 (3)
O2'0.6958 (17)0.5496 (4)0.5505 (4)0.065 (2)0.51 (3)
O3'0.8453 (7)0.6519 (7)0.6185 (4)0.068 (2)0.51 (3)
O50.36497 (17)0.57133 (11)0.77530 (9)0.0522 (4)
O60.4807 (2)0.66251 (12)0.86590 (9)0.0640 (5)
O70.5682 (2)0.66486 (10)0.76049 (10)0.0562 (4)
H70.584 (4)0.640 (2)0.7247 (12)0.099 (12)*
O80.63320 (19)0.55114 (12)0.83566 (10)0.0625 (5)
N10.6123 (2)0.82382 (11)0.51105 (9)0.0410 (4)
H1n10.604 (3)0.7752 (8)0.5238 (13)0.046 (6)*
H1n20.577 (3)0.8265 (16)0.4676 (6)0.057 (7)*
N20.4034 (2)0.46240 (11)0.59581 (9)0.0378 (4)
H2n10.390 (3)0.4557 (16)0.5525 (6)0.059 (8)*
H2n20.480 (2)0.4947 (12)0.6089 (13)0.049 (7)*
N31.0587 (2)0.63815 (11)0.73947 (9)0.0379 (4)
H3n11.003 (2)0.6345 (14)0.6985 (7)0.047 (7)*
H3n21.1482 (17)0.6160 (13)0.7392 (13)0.044 (6)*
C10.8175 (4)0.92758 (18)0.50748 (18)0.0813 (9)
H1A0.76740.96280.53470.122*
H1B0.77490.93690.45940.122*
H1C0.92970.93740.51720.122*
C20.7866 (3)0.84177 (15)0.52506 (12)0.0518 (6)
H20.83010.83330.57430.062*
C30.8635 (3)0.78284 (19)0.48440 (18)0.0711 (8)
H3A0.84210.72940.49750.107*
H3B0.97610.79160.49380.107*
H3C0.82130.79000.43600.107*
C40.5666 (5)0.8766 (2)0.62260 (17)0.0905 (11)
H4A0.67160.89880.63300.136*
H4B0.56890.82340.64080.136*
H4C0.49700.90910.64310.136*
C50.5075 (3)0.87439 (16)0.54560 (14)0.0609 (7)
H50.50670.92900.52770.073*
C60.3412 (4)0.8405 (3)0.5257 (2)0.0934 (12)
H6A0.30800.84010.47630.140*
H6B0.26980.87290.54510.140*
H6C0.34040.78690.54290.140*
C70.4706 (4)0.38395 (19)0.70440 (14)0.0758 (9)
H7A0.36910.39690.71430.114*
H7B0.54700.42330.72480.114*
H7C0.50350.33230.72310.114*
C80.4583 (3)0.38282 (13)0.62715 (12)0.0459 (5)
H80.37980.34240.60720.055*
C90.6128 (3)0.36272 (16)0.60696 (15)0.0620 (7)
H9A0.59790.36240.55760.093*
H9B0.64790.31100.62470.093*
H9C0.69110.40200.62570.093*
C100.1143 (3)0.44046 (19)0.58522 (16)0.0659 (7)
H10A0.13460.39090.60980.099*
H10B0.10270.43090.53670.099*
H10C0.01850.46370.59390.099*
C110.2517 (3)0.49718 (14)0.60939 (12)0.0461 (5)
H110.26370.50580.65910.055*
C120.2265 (3)0.57729 (16)0.57311 (16)0.0597 (6)
H12A0.31550.61140.59030.090*
H12B0.13160.60150.58170.090*
H12C0.21660.56970.52440.090*
C130.9325 (4)0.76767 (18)0.7572 (2)0.0849 (10)
H13A0.88960.74480.79380.127*
H13B0.85800.76120.71420.127*
H13C0.95260.82350.76600.127*
C141.0867 (3)0.72570 (14)0.75319 (14)0.0547 (6)
H141.16090.73200.79760.066*
C151.1633 (4)0.75867 (18)0.69695 (19)0.0760 (9)
H15A1.26040.73060.69700.114*
H15B1.18540.81440.70510.114*
H15C1.09260.75190.65300.114*
C161.0647 (3)0.5999 (2)0.86078 (14)0.0712 (8)
H16A1.06660.65520.87380.107*
H16B1.17140.58080.86550.107*
H16C1.01130.56940.89010.107*
C170.9777 (2)0.59106 (15)0.78665 (13)0.0476 (5)
H170.86960.61160.78240.057*
C180.9683 (3)0.50527 (16)0.76210 (19)0.0720 (8)
H18A0.91150.50290.71500.108*
H18B0.91390.47380.79040.108*
H18C1.07350.48470.76530.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0348 (2)0.0397 (3)0.0275 (2)0.00589 (19)0.00538 (17)0.00145 (19)
S20.0328 (2)0.0516 (3)0.0309 (2)0.0025 (2)0.00650 (18)0.0062 (2)
O10.102 (6)0.046 (3)0.155 (7)0.025 (4)0.081 (5)0.045 (4)
O20.077 (5)0.100 (5)0.028 (2)0.031 (4)0.011 (3)0.018 (3)
O30.029 (2)0.140 (8)0.046 (3)0.017 (3)0.0059 (19)0.009 (4)
O40.0605 (9)0.0598 (10)0.0357 (8)0.0112 (8)0.0203 (7)0.0017 (7)
O1'0.050 (3)0.056 (3)0.127 (5)0.015 (3)0.011 (4)0.045 (3)
O2'0.100 (6)0.051 (3)0.044 (3)0.002 (3)0.014 (3)0.011 (2)
O3'0.057 (3)0.096 (5)0.045 (3)0.040 (3)0.008 (2)0.025 (3)
O50.0340 (7)0.0676 (11)0.0536 (10)0.0023 (7)0.0058 (6)0.0119 (8)
O60.0698 (11)0.0832 (13)0.0400 (9)0.0056 (10)0.0138 (8)0.0220 (9)
O70.0715 (11)0.0512 (10)0.0520 (10)0.0055 (8)0.0265 (9)0.0041 (8)
O80.0450 (9)0.0744 (12)0.0647 (12)0.0125 (8)0.0037 (8)0.0073 (9)
N10.0502 (10)0.0411 (10)0.0312 (9)0.0023 (8)0.0068 (7)0.0063 (7)
N20.0391 (9)0.0437 (10)0.0297 (9)0.0076 (7)0.0046 (7)0.0014 (7)
N30.0317 (8)0.0428 (9)0.0365 (9)0.0022 (7)0.0010 (7)0.0008 (7)
C10.099 (2)0.0678 (19)0.076 (2)0.0386 (17)0.0171 (17)0.0039 (16)
C20.0525 (12)0.0613 (14)0.0389 (12)0.0140 (11)0.0031 (9)0.0054 (10)
C30.0594 (15)0.0784 (19)0.083 (2)0.0034 (14)0.0311 (14)0.0107 (16)
C40.120 (3)0.101 (3)0.0549 (18)0.025 (2)0.0283 (18)0.0156 (17)
C50.0791 (18)0.0545 (14)0.0517 (15)0.0212 (13)0.0196 (12)0.0102 (11)
C60.0603 (17)0.137 (3)0.087 (2)0.031 (2)0.0243 (16)0.030 (2)
C70.114 (2)0.0731 (19)0.0387 (14)0.0098 (17)0.0132 (14)0.0174 (13)
C80.0604 (13)0.0373 (11)0.0375 (11)0.0082 (10)0.0044 (9)0.0023 (9)
C90.0673 (16)0.0542 (14)0.0614 (16)0.0126 (12)0.0063 (13)0.0080 (12)
C100.0451 (13)0.0831 (19)0.0718 (19)0.0161 (13)0.0175 (12)0.0057 (15)
C110.0446 (11)0.0612 (14)0.0337 (11)0.0034 (10)0.0109 (9)0.0096 (10)
C120.0482 (13)0.0610 (15)0.0682 (17)0.0057 (11)0.0081 (11)0.0031 (13)
C130.088 (2)0.0484 (15)0.122 (3)0.0157 (15)0.030 (2)0.0075 (17)
C140.0540 (13)0.0440 (12)0.0603 (15)0.0026 (10)0.0017 (11)0.0095 (11)
C150.0704 (18)0.0574 (17)0.098 (2)0.0149 (14)0.0111 (16)0.0124 (16)
C160.0617 (15)0.109 (2)0.0455 (14)0.0151 (15)0.0178 (12)0.0147 (15)
C170.0341 (10)0.0587 (13)0.0511 (13)0.0062 (9)0.0114 (9)0.0079 (10)
C180.0656 (17)0.0508 (15)0.100 (3)0.0043 (13)0.0192 (16)0.0134 (15)
Geometric parameters (Å, º) top
S1—O31.445 (4)C6—H6A0.9600
S1—O3'1.444 (4)C6—H6B0.9600
S1—O11.448 (4)C6—H6C0.9600
S1—O21.450 (5)C7—C81.513 (3)
S1—O1'1.452 (4)C7—H7A0.9600
S1—O2'1.456 (4)C7—H7B0.9600
S1—O41.4848 (15)C7—H7C0.9600
S2—O81.4344 (17)C8—C91.506 (4)
S2—O51.4494 (16)C8—H80.9800
S2—O61.4508 (17)C9—H9A0.9600
S2—O71.5627 (18)C9—H9B0.9600
O7—H70.856 (10)C9—H9C0.9600
N1—C51.502 (3)C10—C111.516 (3)
N1—C21.500 (3)C10—H10A0.9600
N1—H1n10.860 (10)C10—H10B0.9600
N1—H1n20.854 (10)C10—H10C0.9600
N2—C81.504 (3)C11—C121.516 (4)
N2—C111.506 (3)C11—H110.9800
N2—H2n10.849 (10)C12—H12A0.9600
N2—H2n20.851 (10)C12—H12B0.9600
N3—C171.501 (3)C12—H12C0.9600
N3—C141.501 (3)C13—C141.519 (4)
N3—H3n10.856 (10)C13—H13A0.9600
N3—H3n20.857 (10)C13—H13B0.9600
C1—C21.515 (4)C13—H13C0.9600
C1—H1A0.9600C14—C151.513 (4)
C1—H1B0.9600C14—H140.9800
C1—H1C0.9600C15—H15A0.9600
C2—C31.511 (4)C15—H15B0.9600
C2—H20.9800C15—H15C0.9600
C3—H3A0.9600C16—C171.512 (4)
C3—H3B0.9600C16—H16A0.9600
C3—H3C0.9600C16—H16B0.9600
C4—C51.506 (4)C16—H16C0.9600
C4—H4A0.9600C17—C181.513 (4)
C4—H4B0.9600C17—H170.9800
C4—H4C0.9600C18—H18A0.9600
C5—C61.516 (5)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
O3—S1—O1110.9 (4)C8—C7—H7A109.5
O3—S1—O2110.3 (4)C8—C7—H7B109.5
O1—S1—O2110.9 (4)H7A—C7—H7B109.5
O3'—S1—O1'109.7 (4)C8—C7—H7C109.5
O3'—S1—O2'110.7 (4)H7A—C7—H7C109.5
O1'—S1—O2'108.3 (4)H7B—C7—H7C109.5
O3—S1—O4110.8 (4)C9—C8—N2107.92 (19)
O3'—S1—O4110.3 (3)C9—C8—C7113.1 (2)
O1—S1—O4107.5 (3)N2—C8—C7110.9 (2)
O2—S1—O4106.4 (3)C9—C8—H8108.3
O1'—S1—O4110.9 (3)N2—C8—H8108.3
O2'—S1—O4106.8 (3)C7—C8—H8108.3
O8—S2—O5112.37 (11)C8—C9—H9A109.5
O8—S2—O6114.51 (11)C8—C9—H9B109.5
O5—S2—O6112.38 (10)H9A—C9—H9B109.5
O8—S2—O7107.02 (11)C8—C9—H9C109.5
O5—S2—O7106.37 (10)H9A—C9—H9C109.5
O6—S2—O7103.28 (11)H9B—C9—H9C109.5
S2—O7—H7112 (3)C11—C10—H10A109.5
C5—N1—C2118.4 (2)C11—C10—H10B109.5
C5—N1—H1n1107.6 (17)H10A—C10—H10B109.5
C2—N1—H1n1106.2 (16)C11—C10—H10C109.5
C5—N1—H1n2107.9 (18)H10A—C10—H10C109.5
C2—N1—H1n2108.1 (18)H10B—C10—H10C109.5
H1n1—N1—H1n2108 (2)N2—C11—C10110.6 (2)
C8—N2—C11118.61 (18)N2—C11—C12107.53 (19)
C8—N2—H2n1105.4 (18)C10—C11—C12112.3 (2)
C11—N2—H2n1106.8 (18)N2—C11—H11108.8
C8—N2—H2n2106.2 (17)C10—C11—H11108.8
C11—N2—H2n2110.3 (17)C12—C11—H11108.8
H2n1—N2—H2n2109 (3)C11—C12—H12A109.5
C17—N3—C14118.56 (19)C11—C12—H12B109.5
C17—N3—H3n1108.2 (17)H12A—C12—H12B109.5
C14—N3—H3n1106.2 (16)C11—C12—H12C109.5
C17—N3—H3n2108.2 (17)H12A—C12—H12C109.5
C14—N3—H3n2108.2 (16)H12B—C12—H12C109.5
H3n1—N3—H3n2107 (2)C14—C13—H13A109.5
C2—C1—H1A109.5C14—C13—H13B109.5
C2—C1—H1B109.5H13A—C13—H13B109.5
H1A—C1—H1B109.5C14—C13—H13C109.5
C2—C1—H1C109.5H13A—C13—H13C109.5
H1A—C1—H1C109.5H13B—C13—H13C109.5
H1B—C1—H1C109.5N3—C14—C15107.5 (2)
N1—C2—C3107.7 (2)N3—C14—C13110.6 (2)
N1—C2—C1111.4 (2)C15—C14—C13112.9 (3)
C3—C2—C1112.3 (2)N3—C14—H14108.6
N1—C2—H2108.5C15—C14—H14108.6
C3—C2—H2108.5C13—C14—H14108.6
C1—C2—H2108.5C14—C15—H15A109.5
C2—C3—H3A109.5C14—C15—H15B109.5
C2—C3—H3B109.5H15A—C15—H15B109.5
H3A—C3—H3B109.5C14—C15—H15C109.5
C2—C3—H3C109.5H15A—C15—H15C109.5
H3A—C3—H3C109.5H15B—C15—H15C109.5
H3B—C3—H3C109.5C17—C16—H16A109.5
C5—C4—H4A109.5C17—C16—H16B109.5
C5—C4—H4B109.5H16A—C16—H16B109.5
H4A—C4—H4B109.5C17—C16—H16C109.5
C5—C4—H4C109.5H16A—C16—H16C109.5
H4A—C4—H4C109.5H16B—C16—H16C109.5
H4B—C4—H4C109.5N3—C17—C16110.7 (2)
N1—C5—C4111.5 (2)N3—C17—C18107.4 (2)
N1—C5—C6107.2 (2)C16—C17—C18112.8 (2)
C4—C5—C6112.1 (3)N3—C17—H17108.6
N1—C5—H5108.6C16—C17—H17108.6
C4—C5—H5108.6C18—C17—H17108.6
C6—C5—H5108.6C17—C18—H18A109.5
C5—C6—H6A109.5C17—C18—H18B109.5
C5—C6—H6B109.5H18A—C18—H18B109.5
H6A—C6—H6B109.5C17—C18—H18C109.5
C5—C6—H6C109.5H18A—C18—H18C109.5
H6A—C6—H6C109.5H18B—C18—H18C109.5
H6B—C6—H6C109.5
C5—N1—C2—C3180.0 (2)C8—N2—C11—C1058.1 (3)
C5—N1—C2—C156.5 (3)C8—N2—C11—C12179.04 (18)
C2—N1—C5—C453.9 (3)C17—N3—C14—C15177.8 (2)
C2—N1—C5—C6176.9 (2)C17—N3—C14—C1354.1 (3)
C11—N2—C8—C9178.90 (19)C14—N3—C17—C1655.2 (3)
C11—N2—C8—C754.6 (3)C14—N3—C17—C18178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O40.86 (1)1.76 (1)2.609 (2)174 (4)
N1—H1N1···O10.86 (1)1.76 (1)2.585 (5)159 (3)
N1—H1N2···O6i0.85 (1)2.02 (1)2.874 (2)176 (3)
N2—H2N2···O40.85 (1)2.10 (1)2.929 (2)166 (2)
N2—H2N1···O2ii0.85 (1)1.85 (1)2.695 (6)179 (3)
N2—H2N1···O2ii0.85 (1)2.02 (2)2.855 (8)166 (3)
N3—H3N1···O30.86 (1)1.89 (1)2.738 (8)174 (2)
N3—H3N1···O30.86 (1)1.88 (1)2.711 (7)162 (2)
N3—H3N2···O5iii0.86 (1)2.00 (1)2.819 (2)159 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula3C6H16N+·HSO4·SO42
Mr499.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.6178 (6), 16.741 (1), 19.819 (1)
β (°) 101.973 (5)
V3)2797.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerStoe IPDS-II imaging plate
diffractometer
Absorption correctionAnalytical
(X-SHAPE; Stoe & Cie, 2003)
Tmin, Tmax0.91, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
16154, 6311, 4905
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.06
No. of reflections6311
No. of parameters336
No. of restraints94
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: X-RED (Stoe & Cie, 2001), X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O40.86 (1)1.76 (1)2.609 (2)174 (4)
N1—H1N1···O10.86 (1)1.76 (1)2.585 (5)159 (3)
N1—H1N2···O6i0.85 (1)2.02 (1)2.874 (2)176 (3)
N2—H2N2···O40.85 (1)2.10 (1)2.929 (2)166 (2)
N2—H2N1···O2ii0.85 (1)1.85 (1)2.695 (6)179 (3)
N2—H2N1···O2'ii0.85 (1)2.02 (2)2.855 (8)166 (3)
N3—H3N1···O30.86 (1)1.89 (1)2.738 (8)174 (2)
N3—H3N1···O3'0.86 (1)1.88 (1)2.711 (7)162 (2)
N3—H3N2···O5iii0.86 (1)2.00 (1)2.819 (2)159 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAnderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.  Web of Science CSD CrossRef Google Scholar
First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationJordanovska, V., Boyanov, B. & Naumov, P. (2000). J. Therm. Anal. Calorim. 62, 267–275.  Web of Science CrossRef CAS Google Scholar
First citationKang, S. O., Hossain, Md. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328–330.  Web of Science CSD CrossRef Google Scholar
First citationNovozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel'skii, V. K. (1987). Zh. Strukt. Khim. (Russ.), 28, 84–86.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o558–o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2003). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWarden, A. C., Warren, M., Hearn, M. T. W. & Spiccia, L. (2004). New J. Chem. 28, 1301–1308.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds