organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Chloro-3-phenyl-N-[(S)-1-phenyl­ethyl]prop-2-enamide

aLaboratorio de Organica 210, Departamento de Química, Universidad Simon Bolivar, Apartado 47206, Caracas 1080-A, Venezuela, and bCentro de Química, Instituto Venezolano de Investigaciones Científica (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: urdaneta@usb.ve, abriceno@ivic.ve

(Received 13 June 2008; accepted 20 June 2008; online 5 July 2008)

The asymmetric unit of the title compound, C17H16ClNO, contains two crystallographically independent mol­ecules. These mol­ecules are connected in an alternating fashion through N—H⋯O and C—H⋯O hydrogen bonds, generating one-dimensional chains of graph sets R21(6) and C(4) along the a axis.

Related literature

For related literature, see: Kishikawa et al., (1997[Kishikawa, K., Satoshi, A., Shigeo, K., Makoto, Y. & Kazutoshi, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 77-84.]); Cherry et al. (2003[Cherry, K., Abarbri, M., Parían, J.-L. & Duchene, A. (2003). Tetrahedron Lett. 44, 5791-5794.]); Pontiki & Hadjipavlou (2007[Pontiki, E. & Hadjipavlou, L. (2007). Med. Chem. 3, 175-186.]); Urdaneta et al. (2004[Urdaneta, N. A., Salazar, J., Herrera, J. & López, S. (2004). Synth. Commun. 34, 657-664.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16ClNO

  • Mr = 285.76

  • Orthorhombic, P 21 21 21

  • a = 9.803 (3) Å

  • b = 14.976 (5) Å

  • c = 20.823 (6) Å

  • V = 3057.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 (2) K

  • 0.48 × 0.38 × 0.28 mm

Data collection
  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.897, Tmax = 0.985 (expected range = 0.850–0.934)

  • 32660 measured reflections

  • 5802 independent reflections

  • 3687 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.161

  • S = 1.07

  • 5802 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1693 Friedel pairs

  • Flack parameter: −0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.97 1.89 2.852 (4) 174
N2—H2N⋯O1 0.95 2.04 2.933 (5) 157
C10—H10⋯Cl1 0.93 2.64 3.021 (6) 105
C13—H13⋯N1 0.93 2.55 2.874 (5) 101
C19—H19⋯O1 0.93 2.50 3.315 (5) 146
C27—H27⋯Cl2 0.93 2.65 3.028 (6) 105
C30—H30⋯N2 0.93 2.65 2.951 (5) 99
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), represents a valuable intermediate for the synthesis of biologically active disubstituted pyrimidones (Cherry et al., 2003), phenyl-substituted amides with antioxidant and anti-inflamatory activity as novel lipoxygenase inhibitor (Pontiki & Hadjipavlou, 2007), and also as precursor for photochemical studies (Kishikawa et al., 1997).

The asymmetric unit of (I) contains two crystallographically indepedent molecules of the same stereochemical configuration (Fig. 1): C4 and C21 have S configuration. Each molecule displays two kinds of intramolecular C—H···Cl and C—H···N hydrogen bonds (Table 1). These interactions lead to the formation of five-membered rings described by graph-set symbol S(5) (Bernstein et al., 1995). In each molecule the phenyl groups are twisted with respect to the aliphatic chain defined by C4/N1/C3/O1/C2/C1 (CH1) and C21/N2/C18/C19/C20/O2 atoms (CH2), respectively. The dihedral angles between the C5—C10 and C12—C17 rings and the mean plane of the CH1 are 31.8 (2)° and 88.6 (2)°, for the molecule 1; C29—C34: 81.8 (2)° and C22—C2: 33.8 (2)° for the rings of the molecule 2. These molecules form a dimer linked through a N—H···O and C—H···O intermolecular hydrogen bonds in which the O atom from carbonyl group acts as a double aceptor of hydrogen bonds (Fig 1). This interaction produces a supramolecular motif described by the symbol R21(6). These dimers are connected in an alternate fashion via remaining N—H···O intermolecular hydrogen bonds, generating one-dimensional chains along the a axis (Fig. 2), this interaction is described by the symbol C(4). Adjacent chains are assembled through C—H···π interactions to afford a three-dimensional array.

Related literature top

For related literature, see: Kishikawa et al., (1997); Cherry et al. (2003); Pontiki & Hadjipavlou (2007); Urdaneta et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to a reported procedure (Urdaneta et al., 2004), and colourless blocks of (I) were grown from a saturated AcOEt/Et2O (1:9) solution kept at 277 K.

Refinement top

The N-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in idealised positions (C—H = 0.93-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXLTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXLTL-NT (Sheldrick, 2008); molecular graphics: SHELXLTL-NT (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXLTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omited for clarity and dashed lines indicate the donor···acceptor interactions for the hydrogen bonds.
[Figure 2] Fig. 2. View of the one-dimensional ribbons along the a axis, generated by intermolecular hydrogen bonds. Intramolecular hydrogen bonds are also shown (dashed lines). Most H atoms have been omited for clarity
(Z)-3-Chloro-3-phenyl-N-[(S)-1-phenylethyl]prop-2-enamide top
Crystal data top
C17H16ClNOF(000) = 1200
Mr = 285.76Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 16200 reflections
a = 9.803 (3) Åθ = 1.7–27.5°
b = 14.976 (5) ŵ = 0.25 mm1
c = 20.823 (6) ÅT = 293 K
V = 3057.2 (15) Å3Block, colourless
Z = 80.48 × 0.38 × 0.28 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
5802 independent reflections
Radiation source: Normal-focus sealed tube3687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 811
Tmin = 0.897, Tmax = 0.985k = 1717
32660 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: difmap and geom
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.3975P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.18 e Å3
5802 reflectionsΔρmin = 0.28 e Å3
362 parametersExtinction correction: SHELXLTL-NT (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0040 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1693 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (9)
Crystal data top
C17H16ClNOV = 3057.2 (15) Å3
Mr = 285.76Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.803 (3) ŵ = 0.25 mm1
b = 14.976 (5) ÅT = 293 K
c = 20.823 (6) Å0.48 × 0.38 × 0.28 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
5802 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3687 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.985Rint = 0.063
32660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.161Δρmax = 0.18 e Å3
S = 1.07Δρmin = 0.28 e Å3
5802 reflectionsAbsolute structure: Flack (1983), 1693 Friedel pairs
362 parametersAbsolute structure parameter: 0.03 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22516 (10)0.07828 (9)0.67679 (6)0.0689 (4)
Cl20.67708 (13)0.13296 (11)0.71017 (7)0.0894 (5)
O10.1409 (3)0.0600 (2)0.58351 (14)0.0657 (9)
O20.6351 (3)0.0446 (3)0.58420 (16)0.0829 (11)
N10.0829 (3)0.0843 (2)0.56625 (16)0.0500 (9)
H1N0.17990.07490.57180.075*
N20.4251 (4)0.0362 (3)0.54294 (19)0.0606 (10)
H2N0.32850.04240.54360.091*
C10.0512 (4)0.0668 (3)0.68930 (19)0.0472 (10)
C20.0235 (4)0.0157 (3)0.6501 (2)0.0545 (12)
H20.11720.01860.65670.065*
C30.0199 (4)0.0450 (3)0.5976 (2)0.0530 (11)
C40.0595 (4)0.1488 (3)0.5152 (2)0.0505 (11)
H40.01890.18560.52750.061*
C50.0041 (4)0.1173 (3)0.7437 (2)0.0559 (12)
C60.1234 (5)0.0899 (3)0.7744 (2)0.0677 (13)
H60.16760.03820.76100.081*
C70.1763 (5)0.1392 (4)0.8244 (2)0.0772 (15)
H70.25600.12020.84450.093*
C80.1139 (5)0.2153 (4)0.8451 (2)0.0749 (15)
H80.15200.24890.87810.090*
C90.0041 (5)0.2415 (4)0.8171 (2)0.0771 (15)
H90.04880.29210.83220.092*
C100.0592 (5)0.1940 (4)0.7663 (3)0.0736 (15)
H100.13940.21370.74710.088*
C110.1834 (5)0.2102 (3)0.5095 (3)0.0742 (15)
H11A0.20150.23740.55030.111*
H11B0.16520.25580.47820.111*
H11C0.26130.17600.49630.111*
C120.0270 (4)0.1055 (3)0.4513 (2)0.0498 (11)
C130.0587 (5)0.0188 (3)0.4370 (2)0.0660 (13)
H130.10110.01650.46790.079*
C140.0291 (6)0.0174 (4)0.3779 (3)0.0816 (16)
H140.05220.07620.36880.098*
C150.0353 (6)0.0344 (4)0.3321 (3)0.0823 (17)
H150.05540.01010.29210.099*
C160.0697 (5)0.1213 (4)0.3450 (2)0.0748 (15)
H160.11290.15610.31410.090*
C170.0391 (4)0.1558 (3)0.4044 (2)0.0598 (13)
H170.06330.21450.41350.072*
C180.5007 (4)0.1343 (3)0.6992 (2)0.0566 (12)
C190.4457 (4)0.0998 (3)0.6462 (2)0.0562 (12)
H190.35100.10240.64440.067*
C200.5118 (4)0.0577 (3)0.5898 (2)0.0564 (12)
C210.4705 (5)0.0075 (4)0.4790 (2)0.0692 (14)
H210.55260.04160.46820.083*
C220.4252 (5)0.1776 (3)0.7526 (2)0.0643 (13)
C230.2911 (5)0.1517 (4)0.7646 (2)0.0753 (15)
H230.24950.10810.73950.090*
C240.2199 (7)0.1923 (5)0.8150 (3)0.104 (2)
H240.13210.17330.82500.125*
C250.2783 (10)0.2597 (6)0.8497 (3)0.118 (3)
H250.22820.28790.88170.141*
C260.4087 (9)0.2858 (5)0.8380 (3)0.110 (2)
H260.44800.33140.86200.132*
C270.4825 (6)0.2440 (4)0.7900 (3)0.0804 (16)
H270.57250.26080.78270.096*
C280.3596 (6)0.0315 (4)0.4295 (2)0.0913 (18)
H28A0.33810.09380.43280.137*
H28B0.39240.01880.38700.137*
H28C0.27920.00320.43770.137*
C290.5052 (5)0.0901 (4)0.4736 (2)0.0669 (14)
C300.4374 (6)0.1545 (4)0.5075 (3)0.0836 (16)
H300.37100.13740.53700.100*
C310.4653 (8)0.2447 (5)0.4992 (4)0.107 (2)
H310.41840.28730.52310.128*
C320.5621 (9)0.2707 (5)0.4559 (4)0.113 (2)
H320.58110.33100.45020.136*
C330.6305 (7)0.2085 (6)0.4209 (4)0.118 (3)
H330.69560.22670.39120.142*
C340.6043 (6)0.1177 (5)0.4292 (3)0.0914 (19)
H340.65230.07570.40530.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0419 (6)0.0814 (9)0.0833 (9)0.0033 (6)0.0006 (5)0.0198 (7)
Cl20.0494 (7)0.1156 (12)0.1032 (11)0.0039 (7)0.0093 (7)0.0216 (9)
O10.0387 (17)0.089 (3)0.069 (2)0.0026 (16)0.0028 (14)0.0176 (18)
O20.0356 (18)0.127 (3)0.086 (2)0.0029 (17)0.0049 (16)0.012 (2)
N10.0369 (18)0.063 (2)0.050 (2)0.0017 (17)0.0002 (15)0.0064 (19)
N20.0381 (19)0.074 (3)0.070 (3)0.0029 (18)0.0024 (18)0.005 (2)
C10.035 (2)0.058 (3)0.049 (3)0.003 (2)0.0022 (18)0.002 (2)
C20.042 (2)0.063 (3)0.059 (3)0.002 (2)0.006 (2)0.005 (2)
C30.051 (3)0.059 (3)0.049 (3)0.002 (2)0.003 (2)0.002 (2)
C40.050 (2)0.053 (3)0.049 (3)0.003 (2)0.007 (2)0.003 (2)
C50.050 (2)0.072 (3)0.046 (3)0.002 (2)0.001 (2)0.004 (2)
C60.067 (3)0.074 (4)0.062 (3)0.011 (3)0.017 (2)0.013 (3)
C70.068 (3)0.099 (4)0.065 (3)0.007 (3)0.022 (3)0.015 (3)
C80.071 (3)0.092 (4)0.061 (3)0.006 (3)0.010 (3)0.023 (3)
C90.077 (3)0.081 (4)0.073 (4)0.010 (3)0.013 (3)0.025 (3)
C100.059 (3)0.085 (4)0.077 (4)0.010 (3)0.002 (3)0.019 (3)
C110.080 (3)0.068 (4)0.075 (3)0.023 (3)0.010 (3)0.003 (3)
C120.048 (2)0.060 (3)0.042 (3)0.004 (2)0.0019 (18)0.002 (2)
C130.086 (4)0.056 (3)0.056 (3)0.004 (3)0.003 (3)0.006 (3)
C140.110 (5)0.059 (4)0.076 (4)0.000 (3)0.005 (3)0.018 (3)
C150.103 (4)0.086 (5)0.058 (3)0.022 (3)0.011 (3)0.007 (3)
C160.085 (4)0.087 (4)0.053 (3)0.004 (3)0.010 (3)0.009 (3)
C170.057 (3)0.067 (3)0.055 (3)0.001 (2)0.001 (2)0.009 (3)
C180.042 (2)0.062 (3)0.066 (3)0.004 (2)0.000 (2)0.011 (3)
C190.039 (2)0.068 (3)0.061 (3)0.001 (2)0.004 (2)0.002 (3)
C200.037 (2)0.063 (3)0.069 (3)0.004 (2)0.003 (2)0.005 (2)
C210.057 (3)0.083 (4)0.067 (3)0.006 (3)0.007 (2)0.004 (3)
C220.065 (3)0.067 (3)0.060 (3)0.007 (3)0.001 (3)0.017 (3)
C230.069 (3)0.083 (4)0.073 (3)0.011 (3)0.010 (3)0.008 (3)
C240.089 (4)0.123 (6)0.100 (5)0.024 (4)0.035 (4)0.025 (5)
C250.155 (8)0.132 (7)0.066 (4)0.041 (6)0.025 (5)0.001 (4)
C260.150 (7)0.110 (6)0.070 (4)0.006 (5)0.011 (5)0.012 (4)
C270.093 (4)0.091 (4)0.058 (3)0.001 (3)0.006 (3)0.005 (3)
C280.101 (4)0.100 (5)0.073 (4)0.022 (3)0.018 (3)0.002 (3)
C290.050 (3)0.088 (4)0.062 (3)0.002 (3)0.005 (2)0.009 (3)
C300.083 (4)0.084 (5)0.084 (4)0.003 (3)0.006 (3)0.007 (3)
C310.137 (6)0.075 (5)0.108 (5)0.003 (4)0.003 (5)0.011 (4)
C320.127 (6)0.088 (6)0.124 (7)0.021 (5)0.027 (5)0.024 (5)
C330.098 (5)0.124 (7)0.133 (7)0.027 (5)0.004 (5)0.062 (6)
C340.071 (4)0.108 (5)0.096 (5)0.003 (3)0.012 (3)0.019 (4)
Geometric parameters (Å, º) top
Cl1—C11.734 (4)C15—C161.370 (7)
Cl2—C181.745 (4)C15—H150.9300
O1—C31.242 (5)C16—C171.374 (7)
O2—C201.231 (5)C16—H160.9300
N1—C31.338 (5)C17—H170.9300
N1—C41.455 (5)C18—C191.332 (6)
N1—H1N0.9677C18—C221.484 (7)
N2—C201.333 (6)C19—C201.483 (6)
N2—C211.469 (6)C19—H190.9300
N2—H2N0.9518C21—C291.504 (8)
C1—C21.338 (6)C21—C281.541 (7)
C1—C51.467 (6)C21—H210.9800
C2—C31.483 (6)C22—C271.382 (7)
C2—H20.9300C22—C231.394 (7)
C4—C121.513 (6)C23—C241.399 (8)
C4—C111.528 (6)C23—H230.9300
C4—H40.9800C24—C251.367 (10)
C5—C101.387 (7)C24—H240.9300
C5—C61.394 (6)C25—C261.359 (9)
C6—C71.378 (6)C25—H250.9300
C6—H60.9300C26—C271.385 (8)
C7—C81.363 (7)C26—H260.9300
C7—H70.9300C27—H270.9300
C8—C91.353 (7)C28—H28A0.9600
C8—H80.9300C28—H28B0.9600
C9—C101.385 (7)C28—H28C0.9600
C9—H90.9300C29—C301.368 (7)
C10—H100.9300C29—C341.404 (7)
C11—H11A0.9600C30—C311.390 (8)
C11—H11B0.9600C30—H300.9300
C11—H11C0.9600C31—C321.366 (10)
C12—C131.369 (6)C31—H310.9300
C12—C171.394 (6)C32—C331.359 (10)
C13—C141.376 (7)C32—H320.9300
C13—H130.9300C33—C341.394 (9)
C14—C151.382 (7)C33—H330.9300
C14—H140.9300C34—H340.9300
C3—N1—C4122.0 (3)C16—C17—C12121.9 (5)
C3—N1—H1N128.2C16—C17—H17119.0
C4—N1—H1N109.8C12—C17—H17119.0
C20—N2—C21122.8 (4)C19—C18—C22126.0 (4)
C20—N2—H2N126.9C19—C18—Cl2120.3 (4)
C21—N2—H2N110.1C22—C18—Cl2113.7 (4)
C2—C1—C5124.4 (4)C18—C19—C20130.1 (4)
C2—C1—Cl1120.2 (3)C18—C19—H19114.9
C5—C1—Cl1115.4 (3)C20—C19—H19114.9
C1—C2—C3130.1 (4)O2—C20—N2121.2 (4)
C1—C2—H2115.0O2—C20—C19124.9 (4)
C3—C2—H2115.0N2—C20—C19113.9 (4)
O1—C3—N1121.6 (4)N2—C21—C29114.9 (4)
O1—C3—C2124.0 (4)N2—C21—C28108.9 (4)
N1—C3—C2114.4 (4)C29—C21—C28109.6 (4)
N1—C4—C12113.0 (3)N2—C21—H21107.7
N1—C4—C11109.3 (4)C29—C21—H21107.7
C12—C4—C11110.9 (3)C28—C21—H21107.7
N1—C4—H4107.8C27—C22—C23118.9 (5)
C12—C4—H4107.8C27—C22—C18122.2 (5)
C11—C4—H4107.8C23—C22—C18118.9 (5)
C10—C5—C6117.7 (4)C22—C23—C24118.9 (6)
C10—C5—C1121.5 (4)C22—C23—H23120.5
C6—C5—C1120.8 (4)C24—C23—H23120.5
C7—C6—C5120.3 (5)C25—C24—C23120.6 (6)
C7—C6—H6119.9C25—C24—H24119.7
C5—C6—H6119.9C23—C24—H24119.7
C8—C7—C6121.2 (5)C26—C25—C24120.8 (7)
C8—C7—H7119.4C26—C25—H25119.6
C6—C7—H7119.4C24—C25—H25119.6
C9—C8—C7119.4 (5)C25—C26—C27119.4 (7)
C9—C8—H8120.3C25—C26—H26120.3
C7—C8—H8120.3C27—C26—H26120.3
C8—C9—C10120.9 (5)C22—C27—C26121.3 (6)
C8—C9—H9119.6C22—C27—H27119.3
C10—C9—H9119.6C26—C27—H27119.3
C9—C10—C5120.6 (5)C21—C28—H28A109.5
C9—C10—H10119.7C21—C28—H28B109.5
C5—C10—H10119.7H28A—C28—H28B109.5
C4—C11—H11A109.5C21—C28—H28C109.5
C4—C11—H11B109.5H28A—C28—H28C109.5
H11A—C11—H11B109.5H28B—C28—H28C109.5
C4—C11—H11C109.5C30—C29—C34117.9 (6)
H11A—C11—H11C109.5C30—C29—C21122.4 (5)
H11B—C11—H11C109.5C34—C29—C21119.5 (5)
C13—C12—C17117.8 (4)C29—C30—C31121.7 (6)
C13—C12—C4123.4 (4)C29—C30—H30119.1
C17—C12—C4118.8 (4)C31—C30—H30119.1
C12—C13—C14121.3 (5)C32—C31—C30119.7 (7)
C12—C13—H13119.3C32—C31—H31120.2
C14—C13—H13119.3C30—C31—H31120.2
C13—C14—C15119.6 (5)C33—C32—C31120.1 (7)
C13—C14—H14120.2C33—C32—H32119.9
C15—C14—H14120.2C31—C32—H32119.9
C16—C15—C14120.6 (5)C32—C33—C34120.8 (7)
C16—C15—H15119.7C32—C33—H33119.6
C14—C15—H15119.7C34—C33—H33119.6
C15—C16—C17118.7 (5)C33—C34—C29119.8 (7)
C15—C16—H16120.6C33—C34—H34120.1
C17—C16—H16120.6C29—C34—H34120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.971.892.852 (4)174
N2—H2N···O10.952.042.933 (5)157
C10—H10···Cl10.932.643.021 (6)105
C13—H13···N10.932.552.874 (5)101
C19—H19···O10.932.503.315 (5)146
C27—H27···Cl20.932.653.028 (6)105
C30—H30···N20.932.652.951 (5)99
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H16ClNO
Mr285.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.803 (3), 14.976 (5), 20.823 (6)
V3)3057.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.38 × 0.28
Data collection
DiffractometerRigaku AFC-7S Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.897, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
32660, 5802, 3687
Rint0.063
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.161, 1.07
No. of reflections5802
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28
Absolute structureFlack (1983), 1693 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: CrystalClear (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2004), SHELXLTL-NT (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXLTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.971.892.852 (4)174
N2—H2N···O10.952.042.933 (5)157
C10—H10···Cl10.932.643.021 (6)105
C13—H13···N10.932.552.874 (5)101
C19—H19···O10.932.503.315 (5)146
C27—H27···Cl20.932.653.028 (6)105
C30—H30···N20.932.652.951 (5)99
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank FONACIT-MCT Venezuela for financial support (projects: LAB-199700821).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCherry, K., Abarbri, M., Parían, J.-L. & Duchene, A. (2003). Tetrahedron Lett. 44, 5791–5794.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKishikawa, K., Satoshi, A., Shigeo, K., Makoto, Y. & Kazutoshi, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 77–84.  CrossRef Web of Science Google Scholar
First citationPontiki, E. & Hadjipavlou, L. (2007). Med. Chem. 3, 175–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrdaneta, N. A., Salazar, J., Herrera, J. & López, S. (2004). Synth. Commun. 34, 657–664.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds