organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­benzaldehyde 2-methyl­benzyl­idenehydrazone

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 23 June 2008; accepted 25 June 2008; online 5 July 2008)

The mol­ecule of the title compound, C16H16N2, is centrosymmetric and the dihedral angle between the benzene ring and the dimethyl­hydrazine mean plane is 16.11 (15)°.

Related literature

For background, see: Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]). For related structures, see: Fan et al. (2008[Fan, Z., Shan, S., Wang, S.-H. & Wang, W.-L. (2008). Acta Cryst. E64, o1341.]); Shan et al. (2004[Shan, S., Fan, Z., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o2473-o2475.], 2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2

  • Mr = 236.31

  • Monoclinic, P 21 /c

  • a = 6.1578 (11) Å

  • b = 13.248 (2) Å

  • c = 8.8161 (16) Å

  • β = 105.398 (12)°

  • V = 693.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.32 × 0.28 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 5451 measured reflections

  • 1503 independent reflections

  • 1168 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.10

  • 1503 reflections

  • 84 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongong studies of hydrazone derivatives (Shan et al., 2003), the title compound, (I), has been prepared and its crystal structure is reported here (Fig. 1).

The molecule of (I) is centrosymmetric, with the mid-point of the N—N bond located on an inversion center. The N=C7 double bond distance of 1.2727 (14) Å is shorter than the C=N bond distances found in related hydrazone structures, i.e. 1.295 (2)Å in (E)-3-methoxyacetophenone 4-nitrophenylhydrazone (Fan et al., 2008), 1.2977 (18) Å in (E)-2-furyl methyl ketone 2,4-dinitrophenylhydrazone (Shan et al., 2008) and 1.293 (2) Å in benzylideneacetone 2,4-dinitrophenylhydrazone (Shan et al. 2004). In (I), the terminal benzene ring is twisted with respect to the central dimethylhydrazine plane by 16.11 (15)°. The crystal packing is controlled by van der Waals forces.

Related literature top

For background, see: Shan et al. (2003). For related structures, see: Fan et al. (2008); Shan et al. (2004, 2008).

Experimental top

Hydrazine hydrate (0.10 g, 2 mmol) was dissolved in ethanol (10 ml), then acetic acid (0.1 ml) was added slowly to the ethanol solution with stirring. The solution was heated at 333 K for several minutes until the solution cleared. 2-Methylbenzaldehyde (0.24 g, 2 mmol) was then dropped slowly into the solution, and the mixture was kept at 333 K with continuous stirring for 2 h. After the solution had cooled to room temperature yellow powder appeared. The crude title compound was separated and washed with water three times. Recrystallization from an absolute ethanol yielded yellow plates of (I).

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density with Uiso(H) = 1.5Ueq(C). The other H atoms were placed in calculated positions with C—H = 0.93 and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms. Symmetry code: (i) -x, 1-y, -z.
2-Methylbenzaldehyde 2-methylbenzylidenehydrazone top
Crystal data top
C16H16N2F(000) = 252
Mr = 236.31Dx = 1.132 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2246 reflections
a = 6.1578 (11) Åθ = 3.0–25.5°
b = 13.248 (2) ŵ = 0.07 mm1
c = 8.8161 (16) ÅT = 295 K
β = 105.398 (12)°Plate, yellow
V = 693.4 (2) Å30.32 × 0.28 × 0.12 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1168 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.0°, θmin = 2.9°
Detector resolution: 10.00 pixels mm-1h = 77
ω scansk = 1516
5451 measured reflectionsl = 1111
1503 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.0481P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1503 reflectionsΔρmax = 0.12 e Å3
84 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.099 (12)
Crystal data top
C16H16N2V = 693.4 (2) Å3
Mr = 236.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.1578 (11) ŵ = 0.07 mm1
b = 13.248 (2) ÅT = 295 K
c = 8.8161 (16) Å0.32 × 0.28 × 0.12 mm
β = 105.398 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1168 reflections with I > 2σ(I)
5451 measured reflectionsRint = 0.020
1503 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.10Δρmax = 0.12 e Å3
1503 reflectionsΔρmin = 0.11 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.03959 (16)0.45944 (7)0.05193 (11)0.0545 (3)
C10.33920 (18)0.40583 (8)0.26999 (12)0.0495 (3)
C20.56653 (19)0.41758 (9)0.35123 (13)0.0553 (3)
C30.6648 (2)0.34407 (11)0.46155 (15)0.0731 (4)
H30.81620.34990.51510.088*
C40.5435 (3)0.26319 (11)0.49318 (18)0.0813 (5)
H40.61290.21580.56820.098*
C50.3198 (3)0.25229 (10)0.41412 (16)0.0754 (4)
H50.23770.19770.43560.090*
C60.2186 (2)0.32277 (9)0.30309 (14)0.0617 (4)
H60.06780.31510.24920.074*
C70.22666 (19)0.47938 (8)0.15044 (13)0.0514 (3)
H70.29350.54190.14660.062*
C80.7057 (2)0.50502 (11)0.32086 (16)0.0720 (4)
H8A0.64770.56680.35170.108*
H8B0.69860.50780.21080.108*
H8C0.85930.49630.38070.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0577 (6)0.0502 (6)0.0522 (6)0.0060 (4)0.0086 (4)0.0054 (4)
C10.0564 (6)0.0494 (6)0.0427 (6)0.0049 (5)0.0129 (5)0.0008 (5)
C20.0563 (7)0.0624 (7)0.0471 (6)0.0058 (5)0.0137 (5)0.0003 (5)
C30.0655 (8)0.0849 (10)0.0623 (8)0.0139 (7)0.0055 (6)0.0119 (7)
C40.0945 (11)0.0741 (9)0.0686 (9)0.0164 (8)0.0097 (8)0.0235 (7)
C50.0976 (11)0.0571 (8)0.0700 (9)0.0035 (7)0.0198 (8)0.0121 (6)
C60.0682 (8)0.0567 (7)0.0570 (7)0.0038 (6)0.0112 (6)0.0030 (5)
C70.0549 (6)0.0492 (6)0.0495 (6)0.0012 (5)0.0126 (5)0.0009 (5)
C80.0568 (7)0.0860 (10)0.0711 (8)0.0059 (6)0.0135 (6)0.0053 (7)
Geometric parameters (Å, º) top
N—C71.2727 (14)C4—C51.376 (2)
N—Ni1.4121 (17)C4—H40.9300
C1—C61.4007 (16)C5—C61.3764 (17)
C1—C21.4016 (16)C5—H50.9300
C1—C71.4672 (15)C6—H60.9300
C2—C31.3956 (17)C7—H70.9300
C2—C81.5065 (17)C8—H8A0.9600
C3—C41.3761 (19)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C7—N—Ni112.25 (11)C4—C5—H5120.3
C6—C1—C2119.57 (10)C6—C5—H5120.3
C6—C1—C7119.74 (10)C5—C6—C1121.08 (12)
C2—C1—C7120.70 (10)C5—C6—H6119.5
C3—C2—C1117.90 (12)C1—C6—H6119.5
C3—C2—C8119.92 (11)N—C7—C1121.44 (11)
C1—C2—C8122.18 (10)N—C7—H7119.3
C4—C3—C2121.77 (13)C1—C7—H7119.3
C4—C3—H3119.1C2—C8—H8A109.5
C2—C3—H3119.1C2—C8—H8B109.5
C5—C4—C3120.20 (12)H8A—C8—H8B109.5
C5—C4—H4119.9C2—C8—H8C109.5
C3—C4—H4119.9H8A—C8—H8C109.5
C4—C5—C6119.48 (13)H8B—C8—H8C109.5
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2
Mr236.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.1578 (11), 13.248 (2), 8.8161 (16)
β (°) 105.398 (12)
V3)693.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.28 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5451, 1503, 1168
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.10
No. of reflections1503
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFan, Z., Shan, S., Wang, S.-H. & Wang, W.-L. (2008). Acta Cryst. E64, o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Fan, Z., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o2473–o2475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds