organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1643-o1644

Hoodigogenin A from Hoodia gordonii

aDepartment of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and cNational Center for Natural Products Research, Research Institute for Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 25 June 2008; accepted 16 July 2008; online 31 July 2008)

The title mol­ecule (systematic name: 12-O-β-tigloyl-3β,14β-dihydroxy­pregn-5-en-20-one), C26H38O5, isolated from aerial parts of Hoodia gordonii, has its steroid A and C rings in chair conformations, its B ring in a half-chair conformation, and its five-membered ring in an envelope conformation. The OH group at the C/D ring junction forms an intra­molecular hydrogen bond with the keto substituent. The OH group on the A ring forms an inter­molecular hydrogen bond with the tiglate C=O group, propagating [010] chains in the crystal structure.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Consumer Reports (2006[Consumer Reports (2006). 71, p. 49. New York: Consumers Union.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); MacLean & Luo (2004[MacLean, D. B. & Luo, L.-G. (2004). Brain Res. 1020, 1-11.]); Muller & Albers (2002[Muller, B. & Albers, F. (2002). Illustrated Handbook of Succulent Plants, 1st ed., pp. 142-146. Berlin: Springer-Verlag.]); Nutrition Business Journal (2007[Nutrition Business Journal (2007). 12, pp. 12-14. New York: Penton Media.]); Pawar et al. (2007[Pawar, R. S., Shukla, Y. J., Khan, S. I., Avula, B. & Khan, I. A. (2007). Steroids, 72, 524-534.]); Shin et al. (1990[Shin, W., Shim, J. H., Woo, W. S. & Kang, S. S. (1990). Acta Cryst. C46, 1069-1071.]); Van Heerden et al. (1998[Van Heerden, F. R., Vleggaar, R., Horak, R. M., Learmonth, R. A., Maharaj, V. & Whittal, R. D. (1998). (CSIR, S. Afr.). International Patent, 98-GB1100 9846243.]).

[Scheme 1]

Experimental

Crystal data
  • C26H38O5

  • Mr = 430.56

  • Orthorhombic, P 21 21 21

  • a = 7.6523 (9) Å

  • b = 10.6885 (12) Å

  • c = 27.705 (3) Å

  • V = 2266.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.27 × 0.05 mm

Data collection
  • Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

  • Absorption correction: none

  • 9377 measured reflections

  • 2677 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.02

  • 2677 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10H⋯O5i 0.84 2.11 2.941 (3) 173
O2—H20H⋯O3 0.84 2.10 2.886 (2) 156
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hoodia gordonii, a succulent plant, is one of the 18 species of Hoodia (Fam. Asclepiadaceae) that are indigenous to the summer rainfall regions of the Kalahari Desert in South Africa, Botswana and Namibia (Muller & Albers, 2002). In past few years, Hoodia gordonii has gained popularity as a weight-loss dietary supplement (Van Heerden et al., 1998; Consumer Reports, 2006; Nutrition Business Journal, 2007; MacLean & Luo, 2004). As a part of our ongoing studies on Hoodia, we recently described isolation and characterization of 11 new oxypregnane glycosides (Hoodigosides A—K) along with P57AS3, the reported active oxypregnane glycoside from H. gordonii (Pawar et al., 2007). These glycosides consist of the title compound, hoodigogenin A, (I) as the aglycone. (I) is an unique pregnane derivative, owing to the cis-fusion of rings C and D of the steroid skeleton and the tiglic ester functionality at C12, and is only reported so far from H. gordonii.

The preliminary structure of (I) was elucidated with the help of one-dimensional and two-dimensional NMR, and HRESI-MS methods. The relative configurations were established using the NOESY correlations, in which (I) was characterized as having β-OH groups at C3, and C14. The tiglic ester substitution at C12 and the acetyl side chain at C17 were assigned a β orientation as well (Pawar et al., 2007). Here we report the crystal structure of (I) (Fig. 1), which confirms the relative configurations ascribed by the NMR studies.

The A and C rings (C1—C5, C10; C8, C9, C11—C14 respectively) have chair conformations, with endocyclic torsion-angle magnitudes in the range 42.2 (3) to 60.1 (2)°. The unsaturated B ring (C5—C10) has a half-chair conformation, with C8 displaced by 0.431 (2) Å and C9 by -0.373 (2) Å from the best plane of the other four C atoms. The five-membered D ring has an envelope conformation, with C14 at the flap position, displaced by 0.625 (2) Å from the best plane of the other four C atoms. The conformation of the C(O)Me group with respect to the main skeleton is defined by the torsion angle C16—C17—C20—O3, -37.5 (3)°, and the conformation of the tiglate substituent with respect to the skeleton by C11—C12—O4—C22, -102.8 (2)°. The tiglate is approximately planar, having a slight twist of -5.2 (3)° about its central bond (O4—C22—C23—C25).

The O2—H group forms an intramolecular hydrogen bond with C(O)Me carbonyl O3, making a discrete seven-membered ring, graph set S(7) (Etter, 1990). The O1—H group forms an intermolecular hydrogen bond with tiglate O5 (at 2-x, y-1/2, 3/2-z), thus making chains in the [0 1 0] direction (Table 1).

The Cambridge Structural Database (version 5.29, Nov. 2007; Allen, 2002) contains only one Δ5-pregnane steroid having O-substituents at C3, C12, and C14, refcode SENKUR (Shin et al., 1990). SENKUR, like (I) has OH groups at C3 and C14, a benzoate at C12, and also OH groups at C8 and C17. The conformations of the A, B, and C rings in (I) and SENKUR are similar, with 18 endocyclic torsion angles differing by a mean value of 5.7°. The five-membered ring of SENKUR, however, has an envelope conformation with a different atom, C13 at the flap position. This may be a result of the fact that SENKUR has the opposite configuration at C17, with the C(O)Me substituent α oriented (Shin et al., 1990).

Related literature top

For related literature, see: Allen (2002); Consumer Reports (2006); Etter (1990); MacLean & Luo (2004); Muller & Albers (2002); Nutrition Business Journal (2007); Pawar et al. (2007); Shin et al. (1990); Van Heerden et al. (1998).

Experimental top

Powdered aerial parts of H. gordonii were purchased from a commercial supplier. The plant material was authenticated by Vaishali Joshi by comparing with authentic sample of H. gordonii obtained from Missouri Botanical Garden Missouri, USA. A voucher specimen (Voucher No. 2799) has been deposited in the repository of The National Center for Natural Product Research. 4.75 kg of coarsely powdered H. gordonii was extracted by percolation with CHCl3 (4 × 4 L). These extracts were combined and concentrated to obtain a thick mass (402.1 g). The extract was dissolved in MeOH/H2O (95:5 v/v) and partitioned with hexane. The polar fraction (136 g) was subjected to VLC on silica gel (1500 g) by eluting with gradients of CHCl3/MeOH/H2O from 100:4:0.5 (3L), up to 90:12:0.5 (by increasing MeOH and reducing CHCl3, each by 1% increments), to generate eight sub-fractions.

The sub-fraction 2 was repeatedly chromatographed on a silica gel column using isocratic solvent systems of hexane: CHCl3 (2:98) and CH2Cl2 (100%) that led to isolation of the title compound as an amorphous solid. Compound (I) displayed a prominent blue spot on TLC upon spraying with anisaldehyde-H2SO4 reagent, followed by heating at 100 °C for 1–2 minutes. Further, (I) was dissolved in acetone:hexane (70:30 v/v), which upon standing at room temperature for 24 h yielded 150 mg of colorless crystals. Colorless plates of (I) suitable for X-ray diffraction were obtained by recrystallization in hexane with few drops of acetone. The specific rotation of hoodigogenin A [α]25D is +1.33 (c0.3, CHCl3). Detailed HRESI-MS and NMR data for (1) were described previously (Pawar et al., 2007).

Refinement top

The absolute configuration of (I) could not be determined, and was chosen to agree with the accepted configuration of pregnane steroids (C3 S, C8 R, C9 S, C10 R, C12 R, C13 S, C14 S, C17 S): Friedel pairs were averaged before refinement.

The H atoms were placed in idealized positions (C—H = 0.95-0.99Å, O—H = 0.84Å) and thereafter treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), with displacement ellipsoids at the 50% level (spheres of arbitrary radius for the H atoms).
12-O-β-tigloyl-3β,1β-dihydroxypregn-5-en-20-one top
Crystal data top
C26H38O5F(000) = 936
Mr = 430.56Dx = 1.262 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2446 reflections
a = 7.6523 (9) Åθ = 2.5–26.6°
b = 10.6885 (12) ŵ = 0.09 mm1
c = 27.705 (3) ÅT = 100 K
V = 2266.0 (4) Å3Plate, colorless
Z = 40.30 × 0.27 × 0.05 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
2156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.7°, θmin = 2.7°
ω and ϕ scansh = 99
9377 measured reflectionsk = 1313
2677 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3846P]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H38O5V = 2266.0 (4) Å3
Mr = 430.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6523 (9) ŵ = 0.09 mm1
b = 10.6885 (12) ÅT = 100 K
c = 27.705 (3) Å0.30 × 0.27 × 0.05 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
2156 reflections with I > 2σ(I)
9377 measured reflectionsRint = 0.030
2677 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2677 reflectionsΔρmin = 0.17 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9957 (2)0.46948 (17)0.91649 (6)0.0407 (5)
H10H1.06210.40800.91200.061*
O20.3082 (2)0.30783 (16)0.67021 (6)0.0341 (4)
H20H0.25340.30940.64390.051*
O30.2237 (2)0.30076 (18)0.56873 (6)0.0436 (5)
O40.7859 (2)0.53134 (15)0.59363 (6)0.0305 (4)
O50.7923 (2)0.74167 (16)0.59427 (6)0.0369 (4)
C10.9214 (3)0.5459 (3)0.78456 (8)0.0302 (5)
H1A1.00600.55980.75810.036*
H1B0.85240.62360.78840.036*
C21.0228 (3)0.5220 (3)0.83123 (9)0.0342 (6)
H2A1.10210.44980.82660.041*
H2B1.09510.59620.83890.041*
C30.9010 (4)0.4954 (2)0.87292 (8)0.0338 (6)
H30.82820.57180.87850.041*
C40.7785 (3)0.3879 (2)0.86049 (9)0.0329 (6)
H4A0.84710.30950.85850.039*
H4B0.69210.37800.88680.039*
C50.6821 (3)0.4070 (2)0.81332 (9)0.0291 (5)
C60.5095 (3)0.3951 (2)0.81037 (9)0.0329 (6)
H60.44690.37870.83930.039*
C70.4070 (3)0.4058 (3)0.76433 (9)0.0349 (6)
H7A0.34500.48710.76380.042*
H7B0.31820.33850.76320.042*
C80.5244 (3)0.3962 (2)0.71992 (8)0.0289 (5)
H80.57110.30890.71910.035*
C90.6822 (3)0.4840 (2)0.72681 (8)0.0273 (5)
H90.63460.56800.73580.033*
C100.7967 (3)0.4390 (2)0.76984 (8)0.0276 (5)
C110.7907 (3)0.5023 (2)0.68051 (8)0.0292 (6)
H11A0.87140.57380.68500.035*
H11B0.86220.42660.67470.035*
C120.6770 (3)0.5265 (2)0.63685 (8)0.0284 (5)
H120.61550.60840.64090.034*
C130.5413 (3)0.4230 (2)0.62780 (8)0.0282 (5)
C140.4220 (3)0.4154 (2)0.67314 (9)0.0283 (5)
C150.3094 (3)0.5331 (2)0.66889 (9)0.0324 (6)
H15A0.37450.60790.67980.039*
H15B0.20130.52500.68830.039*
C160.2667 (3)0.5414 (3)0.61473 (9)0.0361 (6)
H16A0.26160.62990.60440.043*
H16B0.15220.50190.60800.043*
C170.4140 (3)0.4716 (2)0.58736 (9)0.0311 (5)
H170.47800.53290.56660.037*
C180.6315 (3)0.2983 (2)0.61696 (9)0.0324 (6)
H18A0.69990.27220.64510.049*
H18B0.70930.30830.58910.049*
H18C0.54310.23470.60970.049*
C190.9048 (3)0.3220 (2)0.75633 (9)0.0306 (6)
H19A0.99600.34540.73320.046*
H19B0.82790.25920.74180.046*
H19C0.95900.28730.78540.046*
C200.3456 (3)0.3660 (2)0.55563 (9)0.0336 (6)
C210.4373 (4)0.3454 (3)0.50851 (9)0.0427 (7)
H21A0.56220.33170.51440.064*
H21B0.42210.41910.48790.064*
H21C0.38770.27190.49240.064*
C220.8251 (3)0.6433 (2)0.57417 (9)0.0296 (5)
C230.9065 (3)0.6338 (2)0.52566 (9)0.0301 (6)
C240.9321 (4)0.7573 (3)0.50011 (11)0.0379 (6)
H24A1.01870.80730.51760.057*
H24B0.82090.80260.49900.057*
H24C0.97350.74200.46720.057*
C250.9463 (3)0.5220 (3)0.50738 (9)0.0344 (6)
H250.92210.45190.52740.041*
C261.0243 (4)0.4940 (3)0.45924 (9)0.0412 (7)
H26A1.06540.57190.44440.062*
H26B0.93590.45530.43850.062*
H26C1.12300.43640.46320.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (11)0.0395 (11)0.0377 (10)0.0083 (10)0.0043 (9)0.0037 (8)
O20.0286 (9)0.0326 (9)0.0412 (9)0.0092 (8)0.0009 (8)0.0016 (8)
O30.0432 (10)0.0413 (11)0.0463 (10)0.0129 (10)0.0051 (10)0.0009 (9)
O40.0285 (8)0.0268 (9)0.0363 (9)0.0004 (8)0.0056 (8)0.0033 (8)
O50.0416 (10)0.0273 (10)0.0417 (10)0.0030 (9)0.0086 (9)0.0013 (8)
C10.0268 (12)0.0270 (13)0.0369 (13)0.0032 (11)0.0028 (11)0.0010 (11)
C20.0316 (12)0.0317 (14)0.0395 (14)0.0052 (12)0.0004 (12)0.0019 (12)
C30.0355 (13)0.0312 (15)0.0346 (13)0.0060 (12)0.0026 (12)0.0002 (11)
C40.0313 (12)0.0314 (14)0.0360 (13)0.0003 (12)0.0050 (11)0.0008 (11)
C50.0279 (12)0.0221 (13)0.0371 (13)0.0007 (10)0.0024 (11)0.0005 (10)
C60.0299 (13)0.0333 (14)0.0354 (13)0.0004 (12)0.0046 (11)0.0028 (12)
C70.0264 (13)0.0380 (15)0.0403 (15)0.0009 (12)0.0048 (12)0.0024 (12)
C80.0227 (11)0.0254 (13)0.0386 (13)0.0004 (11)0.0007 (11)0.0018 (11)
C90.0246 (11)0.0237 (13)0.0337 (13)0.0011 (10)0.0024 (10)0.0006 (10)
C100.0239 (11)0.0243 (13)0.0345 (13)0.0002 (10)0.0027 (10)0.0004 (10)
C110.0215 (11)0.0298 (14)0.0362 (13)0.0012 (10)0.0008 (10)0.0020 (10)
C120.0252 (12)0.0263 (13)0.0338 (13)0.0008 (11)0.0036 (11)0.0018 (11)
C130.0227 (11)0.0265 (13)0.0354 (13)0.0016 (10)0.0007 (10)0.0025 (11)
C140.0200 (11)0.0269 (13)0.0381 (13)0.0023 (10)0.0037 (11)0.0003 (11)
C150.0245 (12)0.0305 (13)0.0422 (13)0.0005 (11)0.0027 (12)0.0007 (12)
C160.0327 (13)0.0323 (14)0.0434 (15)0.0060 (12)0.0001 (12)0.0011 (12)
C170.0277 (11)0.0288 (13)0.0369 (13)0.0004 (11)0.0009 (11)0.0029 (11)
C180.0340 (13)0.0260 (13)0.0372 (13)0.0012 (11)0.0004 (12)0.0009 (11)
C190.0267 (12)0.0280 (14)0.0372 (13)0.0000 (11)0.0017 (11)0.0006 (11)
C200.0333 (13)0.0289 (14)0.0388 (14)0.0014 (12)0.0067 (12)0.0057 (11)
C210.0473 (17)0.0415 (17)0.0393 (15)0.0039 (14)0.0017 (14)0.0023 (13)
C220.0238 (12)0.0273 (13)0.0379 (13)0.0017 (11)0.0014 (11)0.0030 (11)
C230.0238 (12)0.0337 (14)0.0327 (13)0.0027 (11)0.0010 (11)0.0032 (11)
C240.0379 (14)0.0369 (15)0.0388 (13)0.0039 (13)0.0075 (13)0.0026 (11)
C250.0318 (13)0.0343 (15)0.0371 (13)0.0018 (12)0.0005 (12)0.0025 (12)
C260.0426 (15)0.0396 (17)0.0415 (15)0.0064 (13)0.0018 (13)0.0021 (12)
Geometric parameters (Å, º) top
O1—C31.435 (3)C11—H11B0.9900
O1—H10H0.8400C12—C131.538 (3)
O2—C141.445 (3)C12—H121.0000
O2—H20H0.8400C13—C181.530 (3)
O3—C201.220 (3)C13—C141.555 (3)
O4—C221.347 (3)C13—C171.573 (3)
O4—C121.460 (3)C14—C151.529 (3)
O5—C221.216 (3)C15—C161.538 (3)
C1—C21.530 (3)C15—H15A0.9900
C1—C101.543 (3)C15—H15B0.9900
C1—H1A0.9900C16—C171.550 (3)
C1—H1B0.9900C16—H16A0.9900
C2—C31.511 (3)C16—H16B0.9900
C2—H2A0.9900C17—C201.523 (4)
C2—H2B0.9900C17—H171.0000
C3—C41.523 (4)C18—H18A0.9800
C3—H31.0000C18—H18B0.9800
C4—C51.515 (3)C18—H18C0.9800
C4—H4A0.9900C19—H19A0.9800
C4—H4B0.9900C19—H19B0.9800
C5—C61.329 (3)C19—H19C0.9800
C5—C101.529 (3)C20—C211.498 (4)
C6—C71.502 (3)C21—H21A0.9800
C6—H60.9500C21—H21B0.9800
C7—C81.527 (3)C21—H21C0.9800
C7—H7A0.9900C22—C231.485 (3)
C7—H7B0.9900C23—C251.333 (4)
C8—C141.528 (3)C23—C241.511 (4)
C8—C91.542 (3)C24—H24A0.9800
C8—H81.0000C24—H24B0.9800
C9—C111.540 (3)C24—H24C0.9800
C9—C101.555 (3)C25—C261.492 (4)
C9—H91.0000C25—H250.9500
C10—C191.545 (3)C26—H26A0.9800
C11—C121.512 (3)C26—H26B0.9800
C11—H11A0.9900C26—H26C0.9800
C3—O1—H10H109.5C12—C13—C14107.59 (19)
C14—O2—H20H109.5C18—C13—C17115.3 (2)
C22—O4—C12119.14 (18)C12—C13—C17107.28 (19)
C2—C1—C10114.4 (2)C14—C13—C17103.22 (18)
C2—C1—H1A108.7O2—C14—C8104.46 (18)
C10—C1—H1A108.7O2—C14—C15108.09 (18)
C2—C1—H1B108.7C8—C14—C15117.7 (2)
C10—C1—H1B108.7O2—C14—C13110.49 (19)
H1A—C1—H1B107.6C8—C14—C13113.02 (17)
C3—C2—C1111.38 (19)C15—C14—C13103.07 (19)
C3—C2—H2A109.4C14—C15—C16104.0 (2)
C1—C2—H2A109.4C14—C15—H15A111.0
C3—C2—H2B109.4C16—C15—H15A111.0
C1—C2—H2B109.4C14—C15—H15B111.0
H2A—C2—H2B108.0C16—C15—H15B111.0
O1—C3—C2111.6 (2)H15A—C15—H15B109.0
O1—C3—C4110.8 (2)C15—C16—C17107.2 (2)
C2—C3—C4110.4 (2)C15—C16—H16A110.3
O1—C3—H3108.0C17—C16—H16A110.3
C2—C3—H3108.0C15—C16—H16B110.3
C4—C3—H3108.0C17—C16—H16B110.3
C5—C4—C3113.1 (2)H16A—C16—H16B108.5
C5—C4—H4A109.0C20—C17—C16112.9 (2)
C3—C4—H4A109.0C20—C17—C13112.3 (2)
C5—C4—H4B109.0C16—C17—C13105.12 (19)
C3—C4—H4B109.0C20—C17—H17108.8
H4A—C4—H4B107.8C16—C17—H17108.8
C6—C5—C4121.6 (2)C13—C17—H17108.8
C6—C5—C10122.9 (2)C13—C18—H18A109.5
C4—C5—C10115.52 (19)C13—C18—H18B109.5
C5—C6—C7124.3 (2)H18A—C18—H18B109.5
C5—C6—H6117.8C13—C18—H18C109.5
C7—C6—H6117.8H18A—C18—H18C109.5
C6—C7—C8111.86 (19)H18B—C18—H18C109.5
C6—C7—H7A109.2C10—C19—H19A109.5
C8—C7—H7A109.2C10—C19—H19B109.5
C6—C7—H7B109.2H19A—C19—H19B109.5
C8—C7—H7B109.2C10—C19—H19C109.5
H7A—C7—H7B107.9H19A—C19—H19C109.5
C7—C8—C14111.91 (18)H19B—C19—H19C109.5
C7—C8—C9108.7 (2)O3—C20—C21122.2 (2)
C14—C8—C9115.15 (19)O3—C20—C17121.0 (2)
C7—C8—H8106.9C21—C20—C17116.8 (2)
C14—C8—H8106.9C20—C21—H21A109.5
C9—C8—H8106.9C20—C21—H21B109.5
C11—C9—C8113.34 (18)H21A—C21—H21B109.5
C11—C9—C10111.96 (18)C20—C21—H21C109.5
C8—C9—C10110.35 (19)H21A—C21—H21C109.5
C11—C9—H9106.9H21B—C21—H21C109.5
C8—C9—H9106.9O5—C22—O4122.6 (2)
C10—C9—H9106.9O5—C22—C23124.1 (2)
C5—C10—C1108.17 (19)O4—C22—C23113.2 (2)
C5—C10—C19108.47 (19)C25—C23—C22120.1 (2)
C1—C10—C19109.41 (19)C25—C23—C24125.1 (2)
C5—C10—C9110.49 (19)C22—C23—C24114.7 (2)
C1—C10—C9108.76 (19)C23—C24—H24A109.5
C19—C10—C9111.48 (19)C23—C24—H24B109.5
C12—C11—C9112.20 (18)H24A—C24—H24B109.5
C12—C11—H11A109.2C23—C24—H24C109.5
C9—C11—H11A109.2H24A—C24—H24C109.5
C12—C11—H11B109.2H24B—C24—H24C109.5
C9—C11—H11B109.2C23—C25—C26127.7 (2)
H11A—C11—H11B107.9C23—C25—H25116.2
O4—C12—C11109.50 (17)C26—C25—H25116.2
O4—C12—C13106.10 (18)C25—C26—H26A109.5
C11—C12—C13113.3 (2)C25—C26—H26B109.5
O4—C12—H12109.3H26A—C26—H26B109.5
C11—C12—H12109.3C25—C26—H26C109.5
C13—C12—H12109.3H26A—C26—H26C109.5
C18—C13—C12110.73 (19)H26B—C26—H26C109.5
C18—C13—C14112.2 (2)
C10—C1—C2—C356.4 (3)O4—C12—C13—C1769.3 (2)
C1—C2—C3—O1178.4 (2)C11—C12—C13—C17170.54 (19)
C1—C2—C3—C454.7 (3)C7—C8—C14—O267.2 (2)
O1—C3—C4—C5176.92 (19)C9—C8—C14—O2168.12 (18)
C2—C3—C4—C552.8 (3)C7—C8—C14—C1552.7 (3)
C3—C4—C5—C6128.9 (3)C9—C8—C14—C1572.1 (3)
C3—C4—C5—C1051.8 (3)C7—C8—C14—C13172.7 (2)
C4—C5—C6—C7176.5 (2)C9—C8—C14—C1348.0 (3)
C10—C5—C6—C72.7 (4)C18—C13—C14—O249.4 (2)
C5—C6—C7—C815.6 (4)C12—C13—C14—O2171.42 (18)
C6—C7—C8—C14176.4 (2)C17—C13—C14—O275.3 (2)
C6—C7—C8—C948.1 (3)C18—C13—C14—C867.3 (3)
C7—C8—C9—C11168.6 (2)C12—C13—C14—C854.8 (2)
C14—C8—C9—C1142.2 (3)C17—C13—C14—C8168.0 (2)
C7—C8—C9—C1064.9 (2)C18—C13—C14—C15164.7 (2)
C14—C8—C9—C10168.70 (19)C12—C13—C14—C1573.3 (2)
C6—C5—C10—C1131.8 (3)C17—C13—C14—C1539.9 (2)
C4—C5—C10—C148.9 (3)O2—C14—C15—C1676.7 (2)
C6—C5—C10—C19109.6 (3)C8—C14—C15—C16165.4 (2)
C4—C5—C10—C1969.7 (3)C13—C14—C15—C1640.3 (2)
C6—C5—C10—C912.9 (3)C14—C15—C16—C1725.1 (3)
C4—C5—C10—C9167.9 (2)C15—C16—C17—C20122.9 (2)
C2—C1—C10—C551.3 (3)C15—C16—C17—C130.2 (3)
C2—C1—C10—C1966.7 (3)C18—C13—C17—C2023.8 (3)
C2—C1—C10—C9171.30 (19)C12—C13—C17—C20147.6 (2)
C11—C9—C10—C5173.29 (19)C14—C13—C17—C2098.9 (2)
C8—C9—C10—C546.0 (2)C18—C13—C17—C16147.0 (2)
C11—C9—C10—C168.1 (2)C12—C13—C17—C1689.2 (2)
C8—C9—C10—C1164.62 (18)C14—C13—C17—C1624.2 (2)
C11—C9—C10—C1952.6 (3)C16—C17—C20—O337.5 (3)
C8—C9—C10—C1974.7 (2)C13—C17—C20—O381.1 (3)
C8—C9—C11—C1245.5 (3)C16—C17—C20—C21143.6 (2)
C10—C9—C11—C12171.1 (2)C13—C17—C20—C2197.7 (2)
C22—O4—C12—C11102.8 (2)C12—O4—C22—O59.5 (3)
C22—O4—C12—C13134.6 (2)C12—O4—C22—C23168.83 (18)
C9—C11—C12—O4174.75 (19)O5—C22—C23—C25176.5 (3)
C9—C11—C12—C1356.5 (3)O4—C22—C23—C255.2 (3)
O4—C12—C13—C1857.3 (2)O5—C22—C23—C245.4 (4)
C11—C12—C13—C1862.9 (2)O4—C22—C23—C24172.9 (2)
O4—C12—C13—C14179.76 (17)C22—C23—C25—C26178.5 (2)
C11—C12—C13—C1460.1 (2)C24—C23—C25—C260.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···O5i0.842.112.941 (3)173
O2—H20H···O30.842.102.886 (2)156
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC26H38O5
Mr430.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.6523 (9), 10.6885 (12), 27.705 (3)
V3)2266.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.27 × 0.05
Data collection
DiffractometerNonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9377, 2677, 2156
Rint0.030
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.02
No. of reflections2677
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor 1997), SCALEPACK and DENZO (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···O5i0.842.112.941 (3)173
O2—H20H···O30.842.102.886 (2)156
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. Phytochemical research on H. gordonii was funded by USFDA `Botanical Dietary Supplements: Science-Base for Authentication' grant No. FD-U-002071-07. The authors thank Missouri Botanical Garden, USA for authentic plant material. YJS is thankful to the NCNPR for a graduate research assistantship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationConsumer Reports (2006). 71, p. 49. New York: Consumers Union.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacLean, D. B. & Luo, L.-G. (2004). Brain Res. 1020, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuller, B. & Albers, F. (2002). Illustrated Handbook of Succulent Plants, 1st ed., pp. 142–146. Berlin: Springer-Verlag.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNutrition Business Journal (2007). 12, pp. 12–14. New York: Penton Media.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPawar, R. S., Shukla, Y. J., Khan, S. I., Avula, B. & Khan, I. A. (2007). Steroids, 72, 524–534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, W., Shim, J. H., Woo, W. S. & Kang, S. S. (1990). Acta Cryst. C46, 1069–1071.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVan Heerden, F. R., Vleggaar, R., Horak, R. M., Learmonth, R. A., Maharaj, V. & Whittal, R. D. (1998). (CSIR, S. Afr.). International Patent, 98-GB1100 9846243.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1643-o1644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds