metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(3-carb­­oxy-5-sulfonatobenzoato-κO1)(1,10-phenanthroline-κ2N,N′)cobalt(II) monohydrate

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 27 June 2008; accepted 29 June 2008; online 5 July 2008)

In the title compound, [Co(C8H4O7S)(C12H8N2)(H2O)3]·H2O, the CoII cation is coordinated by one sulfoisophthalate dianion, one bidentate phenathroline (phen) mol­ecule and three water mol­ecules in a distorted cis-CoN2O4 octa­hedral geometry. In the crystal structure, aromatic ππ stacking occurs [centroid–centroid distances 3.7630 (14) and 3.7269 (15) Å], as well as an extensive O—H⋯O and C—H⋯O hydrogen-bonding network

Related literature

For related structures, see: Li et al. (2005[Li, X.-H., Xiao, H.-P., Zhang, Q. & Hu, M.-L. (2005). Acta Cryst. C61, m130-m132.]); Liu et al. (2006[Liu, Q.-Y., Wang, Y.-L. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 4843-4851.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O7S)(C12H8N2)(H2O)3]·H2O

  • Mr = 555.37

  • Monoclinic, P 21 /n

  • a = 10.9968 (13) Å

  • b = 13.9358 (18) Å

  • c = 15.870 (2) Å

  • β = 109.645 (14)°

  • V = 2290.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 295 (2) K

  • 0.36 × 0.24 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.740, Tmax = 0.835

  • 25103 measured reflections

  • 4490 independent reflections

  • 3416 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.06

  • 4490 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Co—O1 2.0730 (16)
Co—O5 2.1070 (17)
Co—O6 2.1663 (17)
Co—O7 2.1277 (16)
Co—N1 2.1198 (19)
Co—N2 2.141 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O6i 0.95 2.11 2.881 (3) 137
O1W—H1B⋯O11ii 0.96 1.93 2.873 (3) 165
O4—H4A⋯O1W 0.93 1.71 2.621 (3) 166
O5—H5A⋯O13iii 0.84 1.86 2.695 (3) 175
O5—H5B⋯O3iv 0.86 1.94 2.798 (2) 174
O6—H6A⋯O3v 0.81 2.08 2.803 (2) 149
O6—H6B⋯O12vi 0.85 1.95 2.790 (3) 173
O7—H7A⋯O2 0.86 1.73 2.579 (3) 168
O7—H7B⋯O11iii 0.84 2.03 2.859 (2) 172
C1—H1⋯O5iv 0.93 2.56 3.249 (3) 131
C2—H2⋯O13vii 0.93 2.59 3.506 (4) 167
C3—H3⋯O2vii 0.93 2.48 3.399 (3) 168
C6—H6⋯O1Wviii 0.93 2.59 3.391 (4) 145
C9—H9⋯O12viii 0.93 2.47 3.373 (4) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) x+1, y, z; (viii) x, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing studies of aromatic ππ stacking in coordination complexes (Li et al., 2005; Liu et al., 2006), the title CoII compound, (I), incorporating the sulfoisophthalate ligand has been prepared and its crystal structure is reported here (Fig. 1).

The CoII cation in (I) is coordinated by one sulfoisophthalate dianion, one bidentate phenathroline (phen) molecule and three water molecules in a distorted CoN2O4 octahedral geometry (Table 1). Among the two carboxyl groups of the sulfoisophthalate, the C13-carboxyl group is deprotonated and the difference between C13—O1 and C13—O2 bond distances is small whereas the C20-carboxyl group is not deprotonated and the difference between the C20—O3 and C20—O4 bond distances is larger (Table 1).

This is in agreement with those found in related structures, e.g. catena-((µ3-5-carboxy-3-sulfonatobenzoato)aqua(phenanthroline)lead(II) monohydrate (Li et al., 2005) and bis(µ2-aqua)hexaaquabis(5-sulfoisophthalato)dicadmium(II) (Liu et al., 2006). The C13-carboxyl group is hydrogen bonded (as an acceptor) to the coordinated water molecule while the C20-carboxylo group is hydrogen bonded (as a donor) to the uncoordinated water molecule (Fig. 1). An extensive O—H···O and C—H···O hydrogen bonding network helps to consolidate the packing (Table 2).

A partially overlapped arrangement is observed between nearly parallel phen ring system and the benzene ring of the sulfoisophthalate dianion from an adjacent complex (Fig. 2). The centroid-to-centroid distances of 3.7630 (14) Å between the N1-pyridine and C16i-benzene rings and 3.7269 (15) Å between the C6-benzene and C16i-benzene rings [symmetry code: (i) 1 - x, -y, 1 - z] indicate the existence of ππ stacking between phen and sulfoisophthalate of the adjacent molecule.

Related literature top

For related structures, see: Li et al. (2005); Liu et al. (2006).

Experimental top

A water–ethanol solution (15 ml, 2:1 v/v) containing monosodium 5-sulfoisophthalate (0.27 g, 1 mmol), sodium carbonate (0.053 g, 0.5 mmol), 1,10-phenanthroline (0.10 g, 0.5 mmol) and cobalt nitrate hexahydrate (0.29 g, 1 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. Red prisms of (I) were obtained from the filtrate after one week.

Refinement top

The carboxyl H and water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 40% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. A diagram showing ππ stacking between aromatic rings [symmetry code: (i) 1 - x, -y, 1 - z].
Triaqua(3-carboxy-5-sulfonatobenzoato-κO1)(1,10-phenanthroline- κ2N,N')cobalt(II) monohydrate top
Crystal data top
[Co(C8H4O7S)(C12H8N2)(H2O)3]·H2OF(000) = 1140
Mr = 555.37Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6846 reflections
a = 10.9968 (13) Åθ = 2.0–25.0°
b = 13.9358 (18) ŵ = 0.91 mm1
c = 15.870 (2) ÅT = 295 K
β = 109.645 (14)°Prism, red
V = 2290.4 (5) Å30.36 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4490 independent reflections
Radiation source: fine-focus sealed tube3416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1716
Tmin = 0.740, Tmax = 0.835l = 1819
25103 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1783P]
where P = (Fo2 + 2Fc2)/3
4490 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C8H4O7S)(C12H8N2)(H2O)3]·H2OV = 2290.4 (5) Å3
Mr = 555.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9968 (13) ŵ = 0.91 mm1
b = 13.9358 (18) ÅT = 295 K
c = 15.870 (2) Å0.36 × 0.24 × 0.20 mm
β = 109.645 (14)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4490 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3416 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.835Rint = 0.051
25103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
4490 reflectionsΔρmin = 0.28 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.32537 (3)0.13651 (2)0.35952 (2)0.03134 (12)
S0.05040 (5)0.06815 (4)0.78134 (4)0.03161 (16)
N10.52786 (18)0.12769 (13)0.38882 (13)0.0321 (4)
N20.3431 (2)0.14723 (15)0.22955 (13)0.0387 (5)
O10.32643 (15)0.12435 (12)0.48995 (11)0.0367 (4)
O20.11757 (17)0.14036 (17)0.47225 (13)0.0674 (7)
O30.63866 (15)0.09338 (13)0.80484 (11)0.0418 (4)
O40.55844 (17)0.09929 (17)0.91585 (12)0.0585 (6)
H4A0.63920.09660.95950.088*
O50.30048 (15)0.01239 (12)0.33733 (11)0.0386 (4)
H5A0.22520.03450.32410.058*
H5B0.32450.03520.29500.058*
O60.35517 (15)0.28948 (12)0.38099 (11)0.0388 (4)
H6A0.29230.31080.34200.058*
H6B0.41970.31110.36940.058*
O70.12326 (15)0.16385 (12)0.31242 (11)0.0405 (4)
H7A0.10990.15880.36290.061*
H7B0.07420.12780.27340.061*
O110.05105 (16)0.03233 (12)0.80684 (11)0.0435 (4)
O120.07483 (16)0.13193 (13)0.85730 (12)0.0444 (5)
O130.06484 (15)0.09361 (14)0.70756 (12)0.0465 (5)
O1W0.7986 (2)0.1114 (2)1.02278 (15)0.0893 (9)
H1A0.85960.13800.99850.134*
H1B0.85760.07941.07410.134*
C10.6184 (2)0.11688 (18)0.46861 (17)0.0395 (6)
H10.59290.10650.51810.047*
C20.7504 (3)0.12047 (19)0.4809 (2)0.0488 (7)
H20.81080.11210.53770.059*
C30.7901 (2)0.13620 (18)0.4096 (2)0.0482 (7)
H30.87770.13960.41750.058*
C40.6977 (2)0.14729 (16)0.32399 (19)0.0393 (6)
C50.7295 (3)0.16124 (19)0.2445 (2)0.0497 (7)
H50.81560.16610.24860.060*
C60.6364 (3)0.16742 (19)0.1640 (2)0.0527 (8)
H60.65970.17610.11340.063*
C70.5023 (3)0.16096 (18)0.15414 (18)0.0446 (7)
C80.4010 (3)0.1641 (2)0.07230 (19)0.0596 (8)
H80.41910.17080.01940.071*
C90.2766 (3)0.1574 (2)0.0696 (2)0.0637 (9)
H90.20940.15780.01510.076*
C100.2509 (3)0.1500 (2)0.14981 (19)0.0537 (8)
H100.16530.14680.14730.064*
C110.4678 (2)0.15056 (17)0.23164 (17)0.0349 (6)
C120.5665 (2)0.14201 (16)0.31698 (16)0.0323 (5)
C130.2328 (2)0.12619 (17)0.51846 (16)0.0348 (6)
C140.2602 (2)0.10967 (16)0.61750 (15)0.0305 (5)
C150.1576 (2)0.09694 (17)0.64978 (16)0.0320 (5)
H150.07310.09710.61020.038*
C160.1814 (2)0.08409 (16)0.74032 (15)0.0293 (5)
C170.3073 (2)0.08407 (16)0.80040 (16)0.0317 (5)
H170.32260.07590.86130.038*
C180.4098 (2)0.09629 (17)0.76915 (15)0.0312 (5)
C190.3862 (2)0.10878 (17)0.67763 (16)0.0313 (5)
H190.45510.11650.65670.038*
C200.5461 (2)0.09713 (18)0.83179 (16)0.0351 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02507 (18)0.0439 (2)0.0262 (2)0.00116 (13)0.01016 (14)0.00125 (14)
S0.0246 (3)0.0425 (3)0.0300 (3)0.0027 (2)0.0122 (3)0.0003 (3)
N10.0287 (10)0.0399 (11)0.0287 (11)0.0004 (8)0.0110 (9)0.0012 (9)
N20.0379 (12)0.0501 (13)0.0271 (12)0.0012 (10)0.0095 (10)0.0028 (9)
O10.0289 (9)0.0581 (11)0.0255 (9)0.0008 (7)0.0122 (7)0.0025 (8)
O20.0307 (10)0.141 (2)0.0324 (11)0.0098 (11)0.0125 (9)0.0141 (12)
O30.0264 (9)0.0628 (11)0.0378 (10)0.0036 (8)0.0130 (8)0.0111 (9)
O40.0326 (10)0.1136 (17)0.0280 (10)0.0016 (11)0.0086 (8)0.0058 (11)
O50.0324 (9)0.0489 (10)0.0370 (10)0.0058 (7)0.0149 (8)0.0054 (8)
O60.0271 (8)0.0478 (10)0.0438 (10)0.0009 (7)0.0149 (8)0.0058 (8)
O70.0306 (9)0.0577 (11)0.0318 (10)0.0018 (8)0.0085 (8)0.0016 (8)
O110.0412 (10)0.0457 (10)0.0476 (11)0.0046 (8)0.0205 (9)0.0054 (9)
O120.0374 (10)0.0588 (12)0.0421 (11)0.0031 (8)0.0200 (9)0.0150 (9)
O130.0248 (9)0.0721 (13)0.0401 (11)0.0009 (8)0.0077 (8)0.0100 (9)
O1W0.0410 (12)0.174 (3)0.0463 (14)0.0109 (14)0.0059 (10)0.0314 (15)
C10.0319 (13)0.0495 (15)0.0355 (15)0.0006 (11)0.0093 (12)0.0020 (12)
C20.0343 (14)0.0544 (17)0.0490 (18)0.0024 (12)0.0025 (13)0.0004 (14)
C30.0264 (13)0.0477 (16)0.071 (2)0.0014 (11)0.0164 (14)0.0012 (14)
C40.0380 (14)0.0310 (13)0.0588 (18)0.0015 (10)0.0291 (14)0.0002 (12)
C50.0503 (17)0.0424 (16)0.072 (2)0.0004 (13)0.0416 (17)0.0008 (14)
C60.077 (2)0.0411 (15)0.064 (2)0.0034 (14)0.0561 (19)0.0034 (14)
C70.0640 (19)0.0398 (15)0.0406 (16)0.0052 (13)0.0316 (15)0.0040 (12)
C80.089 (3)0.063 (2)0.0345 (17)0.0117 (18)0.0306 (17)0.0098 (14)
C90.078 (2)0.078 (2)0.0265 (16)0.0079 (18)0.0057 (16)0.0064 (15)
C100.0482 (17)0.072 (2)0.0343 (16)0.0018 (15)0.0059 (14)0.0050 (14)
C110.0438 (15)0.0335 (13)0.0340 (14)0.0020 (10)0.0217 (12)0.0021 (10)
C120.0350 (13)0.0287 (12)0.0389 (15)0.0009 (10)0.0199 (12)0.0017 (10)
C130.0285 (13)0.0493 (15)0.0285 (13)0.0020 (11)0.0123 (11)0.0011 (11)
C140.0306 (12)0.0347 (12)0.0286 (13)0.0025 (10)0.0132 (11)0.0027 (10)
C150.0261 (12)0.0389 (13)0.0317 (13)0.0010 (10)0.0108 (10)0.0026 (11)
C160.0277 (12)0.0329 (12)0.0305 (13)0.0019 (9)0.0139 (10)0.0022 (10)
C170.0305 (12)0.0397 (14)0.0276 (13)0.0024 (10)0.0134 (11)0.0007 (10)
C180.0287 (12)0.0345 (12)0.0298 (13)0.0038 (10)0.0089 (10)0.0022 (10)
C190.0270 (12)0.0401 (13)0.0320 (13)0.0019 (10)0.0166 (10)0.0016 (11)
C200.0269 (12)0.0452 (14)0.0328 (14)0.0028 (11)0.0096 (11)0.0012 (11)
Geometric parameters (Å, º) top
Co—O12.0730 (16)C2—C31.361 (4)
Co—O52.1070 (17)C2—H20.9300
Co—O62.1663 (17)C3—C41.405 (4)
Co—O72.1277 (16)C3—H30.9300
Co—N12.1198 (19)C4—C121.411 (3)
Co—N22.141 (2)C4—C51.431 (4)
S—O111.4569 (18)C5—C61.345 (4)
S—O121.4482 (18)C5—H50.9300
S—O131.4509 (17)C6—C71.432 (4)
S—C161.783 (2)C6—H60.9300
N1—C11.330 (3)C7—C81.399 (4)
N1—C121.359 (3)C7—C111.411 (3)
N2—C101.330 (3)C8—C91.357 (4)
N2—C111.361 (3)C8—H80.9300
O1—C131.257 (3)C9—C101.398 (4)
O2—C131.248 (3)C9—H90.9300
O3—C201.231 (3)C10—H100.9300
O4—C201.295 (3)C11—C121.428 (3)
O4—H4A0.9257C13—C141.515 (3)
O5—H5A0.8416C14—C191.393 (3)
O5—H5B0.8608C14—C151.399 (3)
O6—H6A0.8129C15—C161.383 (3)
O6—H6B0.8463C15—H150.9300
O7—H7A0.8645C16—C171.392 (3)
O7—H7B0.8385C17—C181.386 (3)
O1W—H1A0.9530C17—H170.9300
O1W—H1B0.9630C18—C191.398 (3)
C1—C21.399 (4)C18—C201.495 (3)
C1—H10.9300C19—H190.9300
O1—Co—O592.48 (6)C12—C4—C5118.9 (3)
O1—Co—N197.09 (7)C6—C5—C4120.8 (3)
O5—Co—N192.72 (7)C6—C5—H5119.6
O1—Co—O791.14 (6)C4—C5—H5119.6
O5—Co—O793.21 (6)C5—C6—C7121.8 (3)
N1—Co—O7169.64 (7)C5—C6—H6119.1
O1—Co—N2174.74 (7)C7—C6—H6119.1
O5—Co—N287.51 (7)C8—C7—C11116.7 (3)
N1—Co—N277.66 (8)C8—C7—C6124.7 (3)
O7—Co—N294.11 (7)C11—C7—C6118.7 (3)
O1—Co—O688.49 (6)C9—C8—C7120.5 (3)
O5—Co—O6178.49 (6)C9—C8—H8119.8
N1—Co—O686.00 (6)C7—C8—H8119.8
O7—Co—O687.93 (6)C8—C9—C10119.1 (3)
N2—Co—O691.43 (7)C8—C9—H9120.4
O12—S—O13112.88 (11)C10—C9—H9120.4
O12—S—O11112.12 (11)N2—C10—C9123.1 (3)
O13—S—O11112.37 (11)N2—C10—H10118.5
O12—S—C16106.31 (11)C9—C10—H10118.5
O13—S—C16105.58 (11)N2—C11—C7123.1 (2)
O11—S—C16106.98 (10)N2—C11—C12117.3 (2)
C1—N1—C12118.0 (2)C7—C11—C12119.6 (2)
C1—N1—Co127.59 (17)N1—C12—C4122.8 (2)
C12—N1—Co114.17 (15)N1—C12—C11117.1 (2)
C10—N2—C11117.5 (2)C4—C12—C11120.1 (2)
C10—N2—Co129.16 (19)O2—C13—O1125.8 (2)
C11—N2—Co113.33 (16)O2—C13—C14116.3 (2)
C13—O1—Co128.88 (16)O1—C13—C14118.0 (2)
C20—O4—H4A120.8C19—C14—C15119.1 (2)
Co—O5—H5A117.7C19—C14—C13121.1 (2)
Co—O5—H5B116.0C15—C14—C13119.7 (2)
H5A—O5—H5B101.8C16—C15—C14120.2 (2)
Co—O6—H6A101.2C16—C15—H15119.9
Co—O6—H6B114.2C14—C15—H15119.9
H6A—O6—H6B105.4C15—C16—C17120.6 (2)
Co—O7—H7A98.2C15—C16—S120.11 (17)
Co—O7—H7B119.3C17—C16—S119.32 (17)
H7A—O7—H7B111.6C18—C17—C16119.7 (2)
H1A—O1W—H1B99.1C18—C17—H17120.1
N1—C1—C2122.5 (2)C16—C17—H17120.1
N1—C1—H1118.7C17—C18—C19119.9 (2)
C2—C1—H1118.7C17—C18—C20121.2 (2)
C3—C2—C1119.8 (3)C19—C18—C20119.0 (2)
C3—C2—H2120.1C14—C19—C18120.5 (2)
C1—C2—H2120.1C14—C19—H19119.8
C2—C3—C4119.5 (2)C18—C19—H19119.8
C2—C3—H3120.3O3—C20—O4123.1 (2)
C4—C3—H3120.3O3—C20—C18122.0 (2)
C3—C4—C12117.3 (2)O4—C20—C18114.8 (2)
C3—C4—C5123.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6i0.952.112.881 (3)137
O1W—H1B···O11ii0.961.932.873 (3)165
O4—H4A···O1W0.931.712.621 (3)166
O5—H5A···O13iii0.841.862.695 (3)175
O5—H5B···O3iv0.861.942.798 (2)174
O6—H6A···O3v0.812.082.803 (2)149
O6—H6B···O12vi0.851.952.790 (3)173
O7—H7A···O20.861.732.579 (3)168
O7—H7B···O11iii0.842.032.859 (2)172
C1—H1···O5iv0.932.563.249 (3)131
C2—H2···O13vii0.932.593.506 (4)167
C3—H3···O2vii0.932.483.399 (3)168
C6—H6···O1Wviii0.932.593.391 (4)145
C9—H9···O12viii0.932.473.373 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x+1, y, z; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C8H4O7S)(C12H8N2)(H2O)3]·H2O
Mr555.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.9968 (13), 13.9358 (18), 15.870 (2)
β (°) 109.645 (14)
V3)2290.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.36 × 0.24 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.740, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
25103, 4490, 3416
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.06
No. of reflections4490
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—O12.0730 (16)Co—O72.1277 (16)
Co—O52.1070 (17)Co—N12.1198 (19)
Co—O62.1663 (17)Co—N22.141 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O6i0.952.112.881 (3)137
O1W—H1B···O11ii0.961.932.873 (3)165
O4—H4A···O1W0.931.712.621 (3)166
O5—H5A···O13iii0.841.862.695 (3)175
O5—H5B···O3iv0.861.942.798 (2)174
O6—H6A···O3v0.812.082.803 (2)149
O6—H6B···O12vi0.851.952.790 (3)173
O7—H7A···O20.861.732.579 (3)168
O7—H7B···O11iii0.842.032.859 (2)172
C1—H1···O5iv0.932.563.249 (3)131
C2—H2···O13vii0.932.593.506 (4)167
C3—H3···O2vii0.932.483.399 (3)168
C6—H6···O1Wviii0.932.593.391 (4)145
C9—H9···O12viii0.932.473.373 (4)164
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x+1, y, z; (viii) x, y, z1.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, X.-H., Xiao, H.-P., Zhang, Q. & Hu, M.-L. (2005). Acta Cryst. C61, m130–m132.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Q.-Y., Wang, Y.-L. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 4843–4851.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds