organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N′-[(E)-4-hydr­­oxy-3-meth­oxy­benzyl­­idene]hydrazine­carboxyl­ate

aZhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zpccxw@126.com

(Received 27 June 2008; accepted 28 June 2008; online 5 July 2008)

The mol­ecule of the title compound, C10H12N2O4, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate mean plane is 36.54 (6)°. The mol­ecules are linked into a two-dimensional network by inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, and by aromatic ππ stacking inter­actions [ring-centroid separation 3.7689 (9) Å].

Related literature

For a related structure, see: Cheng (2008[Cheng, X.-W. (2008). Acta Cryst. E64, o1302.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O4

  • Mr = 224.22

  • Monoclinic, P 21 /c

  • a = 9.4718 (10) Å

  • b = 11.0983 (11) Å

  • c = 10.3220 (11) Å

  • β = 98.272 (4)°

  • V = 1073.77 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 123 (2) K

  • 0.29 × 0.27 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.968

  • 11214 measured reflections

  • 1887 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.113

  • S = 1.02

  • 1887 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.21 2.6695 (15) 114
O1—H1⋯O3i 0.84 2.34 3.0286 (16) 139
O1—H1⋯N1i 0.84 2.57 3.2640 (17) 140
N2—H2B⋯O3ii 0.88 2.19 3.0124 (16) 155
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoig studies of benzaldehydehydrazone derivatives (Cheng, 2008), we now report the synthesis and structure of the title compound, (I).

The title molecule (Fig. 1) adopts a trans configuration with respect to the CN bond. The dihedral angle between the benzene ring and the C9/C10//N1/N2/O3/O4 plane is 36.54 (6)°. Otherwise, the bond lengths and angles for (I) agree with those observed for (E)-methylN'-(4-hydroxybenzylidene)hydrazinecarboxylate (Cheng, 2008).

In the crystal, the molecules are linked into a two-dimensional network by intramolecular O—H···O and intermolecular O—H···O, N—H···O, O—H···N hydrogen bonds (Table 1). Additionally, neighbouring aromatic rings interact by ππ stacking [centroid separation = 3.7689 (9) Å].

Related literature top

For a related structure, see: Cheng (2008).

Experimental top

4-Hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 480–482 K).

Refinement top

The H atoms were placed geometrically (O—H = 0.84 Å, N—H = 0.88 Å and C—H = 0.95 or 0.98 Å) and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
Methyl N'-[(E)-4-hydroxy-3-methoxybenzylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O4F(000) = 472
Mr = 224.22Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1887 reflections
a = 9.4718 (10) Åθ = 2.2–25.0°
b = 11.0983 (11) ŵ = 0.11 mm1
c = 10.3220 (11) ÅT = 123 K
β = 98.272 (4)°Block, colourless
V = 1073.77 (19) Å30.29 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1887 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1110
Tmin = 0.965, Tmax = 0.968k = 1313
11214 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1817P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.010
1887 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (5)
Crystal data top
C10H12N2O4V = 1073.77 (19) Å3
Mr = 224.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4718 (10) ŵ = 0.11 mm1
b = 11.0983 (11) ÅT = 123 K
c = 10.3220 (11) Å0.29 × 0.27 × 0.26 mm
β = 98.272 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1590 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.968Rint = 0.029
11214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1887 reflectionsΔρmin = 0.14 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46841 (16)0.22471 (12)0.90488 (15)0.0408 (4)
C20.57541 (17)0.23855 (13)1.00956 (16)0.0453 (4)
H2A0.57600.30731.06450.054*
C30.46883 (16)0.12325 (13)0.82397 (14)0.0405 (4)
C40.3402 (2)0.01177 (17)0.64655 (17)0.0596 (5)
H4A0.25500.01910.58090.089*
H4B0.33090.05890.70160.089*
H4C0.42460.00260.60250.089*
C50.57560 (15)0.03861 (13)0.84778 (14)0.0406 (4)
H50.57610.02910.79160.049*
C60.68260 (16)0.15212 (14)1.03504 (15)0.0439 (4)
H60.75540.16181.10790.053*
C70.68361 (15)0.05223 (13)0.95482 (14)0.0390 (4)
C80.79364 (16)0.04036 (13)0.98484 (15)0.0425 (4)
H80.84970.04141.06890.051*
C90.96010 (15)0.28026 (12)0.85416 (14)0.0381 (4)
C101.0957 (2)0.45396 (18)0.82782 (19)0.0681 (6)
H10A1.15240.51520.88040.102*
H10B1.15620.41130.77340.102*
H10C1.01660.49290.77150.102*
N10.81595 (13)0.11952 (11)0.90087 (12)0.0409 (3)
N20.91622 (13)0.20662 (11)0.94426 (12)0.0434 (3)
H2B0.95020.21371.02790.052*
O10.36374 (12)0.30938 (9)0.88270 (11)0.0543 (3)
H10.30600.29000.81640.081*
O20.35509 (13)0.11728 (10)0.72612 (11)0.0571 (4)
O30.93369 (12)0.26695 (10)0.73659 (10)0.0508 (3)
O41.03976 (12)0.36926 (10)0.91342 (10)0.0520 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (8)0.0368 (7)0.0437 (9)0.0025 (6)0.0071 (6)0.0028 (6)
C20.0511 (9)0.0373 (8)0.0469 (9)0.0004 (6)0.0045 (7)0.0050 (6)
C30.0410 (8)0.0445 (8)0.0360 (8)0.0010 (6)0.0055 (6)0.0012 (6)
C40.0648 (11)0.0618 (10)0.0485 (10)0.0017 (9)0.0038 (8)0.0113 (8)
C50.0432 (8)0.0401 (8)0.0398 (8)0.0016 (6)0.0101 (6)0.0025 (6)
C60.0431 (8)0.0458 (8)0.0415 (9)0.0022 (7)0.0018 (6)0.0014 (6)
C70.0387 (8)0.0403 (7)0.0390 (8)0.0002 (6)0.0095 (6)0.0040 (6)
C80.0431 (8)0.0455 (8)0.0387 (8)0.0030 (6)0.0056 (6)0.0025 (6)
C90.0352 (7)0.0434 (8)0.0349 (8)0.0014 (6)0.0029 (6)0.0006 (6)
C100.0767 (13)0.0687 (12)0.0567 (11)0.0307 (10)0.0019 (9)0.0149 (9)
N10.0393 (7)0.0442 (7)0.0393 (7)0.0059 (5)0.0064 (5)0.0070 (5)
N20.0465 (7)0.0500 (7)0.0328 (7)0.0132 (6)0.0033 (5)0.0023 (5)
O10.0565 (7)0.0465 (6)0.0559 (7)0.0137 (5)0.0053 (5)0.0084 (5)
O20.0551 (7)0.0610 (7)0.0501 (7)0.0157 (5)0.0093 (5)0.0147 (5)
O30.0589 (7)0.0593 (7)0.0336 (7)0.0073 (5)0.0046 (5)0.0001 (5)
O40.0612 (7)0.0534 (7)0.0402 (6)0.0199 (5)0.0026 (5)0.0030 (5)
Geometric parameters (Å, º) top
C1—O11.3613 (17)C6—H60.9500
C1—C21.380 (2)C7—C81.465 (2)
C1—C31.402 (2)C8—N11.2729 (19)
C2—C61.394 (2)C8—H80.9500
C2—H2A0.9500C9—O31.2123 (18)
C3—O21.3682 (18)C9—O41.3366 (17)
C3—C51.376 (2)C9—N21.3479 (19)
C4—O21.4256 (19)C10—O41.4421 (19)
C4—H4A0.9800C10—H10A0.9800
C4—H4B0.9800C10—H10B0.9800
C4—H4C0.9800C10—H10C0.9800
C5—C71.402 (2)N1—N21.3837 (16)
C5—H50.9500N2—H2B0.8800
C6—C71.385 (2)O1—H10.8400
O1—C1—C2119.35 (13)C6—C7—C8120.08 (13)
O1—C1—C3121.23 (13)C5—C7—C8120.50 (13)
C2—C1—C3119.42 (13)N1—C8—C7121.53 (13)
C1—C2—C6120.28 (14)N1—C8—H8119.2
C1—C2—H2A119.9C7—C8—H8119.2
C6—C2—H2A119.9O3—C9—O4124.73 (13)
O2—C3—C5125.38 (13)O3—C9—N2125.25 (13)
O2—C3—C1114.15 (13)O4—C9—N2110.01 (12)
C5—C3—C1120.45 (13)O4—C10—H10A109.5
O2—C4—H4A109.5O4—C10—H10B109.5
O2—C4—H4B109.5H10A—C10—H10B109.5
H4A—C4—H4B109.5O4—C10—H10C109.5
O2—C4—H4C109.5H10A—C10—H10C109.5
H4A—C4—H4C109.5H10B—C10—H10C109.5
H4B—C4—H4C109.5C8—N1—N2115.80 (12)
C3—C5—C7120.09 (13)C9—N2—N1117.75 (12)
C3—C5—H5120.0C9—N2—H2B121.1
C7—C5—H5120.0N1—N2—H2B121.1
C7—C6—C2120.37 (14)C1—O1—H1109.5
C7—C6—H6119.8C3—O2—C4117.85 (12)
C2—C6—H6119.8C9—O4—C10115.75 (12)
C6—C7—C5119.38 (13)
O1—C1—C2—C6179.17 (14)C3—C5—C7—C8176.91 (13)
C3—C1—C2—C60.3 (2)C6—C7—C8—N1165.42 (14)
O1—C1—C3—O21.5 (2)C5—C7—C8—N116.9 (2)
C2—C1—C3—O2177.96 (14)C7—C8—N1—N2175.85 (12)
O1—C1—C3—C5179.93 (14)O3—C9—N2—N110.3 (2)
C2—C1—C3—C50.6 (2)O4—C9—N2—N1170.91 (11)
O2—C3—C5—C7177.24 (13)C8—N1—N2—C9169.52 (13)
C1—C3—C5—C71.1 (2)C5—C3—O2—C44.0 (2)
C1—C2—C6—C70.7 (2)C1—C3—O2—C4174.49 (14)
C2—C6—C7—C50.1 (2)O3—C9—O4—C100.3 (2)
C2—C6—C7—C8177.83 (13)N2—C9—O4—C10179.09 (14)
C3—C5—C7—C60.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.212.6695 (15)114
O1—H1···O3i0.842.343.0286 (16)139
O1—H1···N1i0.842.573.2640 (17)140
N2—H2B···O3ii0.882.193.0124 (16)155
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O4
Mr224.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.4718 (10), 11.0983 (11), 10.3220 (11)
β (°) 98.272 (4)
V3)1073.77 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.27 × 0.26
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.965, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11214, 1887, 1590
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.113, 1.02
No. of reflections1887
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.212.6695 (15)114
O1—H1···O3i0.842.343.0286 (16)139
O1—H1···N1i0.842.573.2640 (17)140
N2—H2B···O3ii0.882.193.0124 (16)155
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The author acknowledges financial support from Zhejiang Police College, China.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-W. (2008). Acta Cryst. E64, o1302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds