organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3,4-Dibut­­oxy-5-(5-phenyl-1,3,4-oxa­diazol-2-yl)-2-thien­yl]-5-phenyl-1,3,4-oxa­diazole

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 1 July 2008; accepted 2 July 2008; online 5 July 2008)

In the title compound, C28H28N4O4S, the dihedral angles between the central thio­phene ring and its pendant oxadiazole rings are 1.2 (3) and 9.8 (3)°. The dihedral angles between the oxadiazole and phenyl rings are 2.9 (3) and 1.8 (3)°. Some short intra­molecular C—H⋯O contacts occur.

Related literature

For related literature, see: Bugatti et al. (2006[Bugatti, V., Concilio, S., Iannelli, P., Piotto, S. P., Bellone, S., Ferrara, M., Neitzert, H. C., Rubino, A., Della Sala, D. & Vacca, P. (2006). Synth. Met. 156, 13-20.]); Brault et al. (2005[Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28N4O4S

  • Mr = 516.60

  • Monoclinic, P 21 /c

  • a = 7.6770 (15) Å

  • b = 16.871 (3) Å

  • c = 20.398 (4) Å

  • β = 93.77 (3)°

  • V = 2636.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 (2) K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.953, Tmax = 0.992

  • 5100 measured reflections

  • 4722 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.203

  • S = 1.00

  • 4722 reflections

  • 328 parameters

  • 216 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2 0.97 2.60 2.973 (9) 103
C8—H8B⋯O4 0.97 2.49 3.089 (7) 120
C13—H13A⋯O3 0.93 2.54 2.857 (8) 100

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiophene derivatives possess electroluminescence (Bugatti et al., 2006) and biological properties (Brault et al., 2005) effects. As part of our studies in this area, we report here the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angles between the thiophene ring and its pendant O3- and O4-containing oxadiazole rings are 1.2 (3)° and 9.8 (3)°, respectively. Some short intramolecular C—H···O contacts occur (Table 1), which might help to stabilise the molecular conformation.

Related literature top

For related literature, see: Bugatti et al. (2006); Brault et al. (2005).

Experimental top

3,4-Dibutoxythiophene-2,5-dicarbohydrazide (10 mmol) was dissolved in pyridine (30 ml), and benzoyl chloride (22 mmol) was dropped into the mixture, which was heated to 348 K for 12 h. After cooling, the mixture was poured into cold water to recover a white solid.

The white solid was dissolved in phosphoryl trichloride (30 ml). The mixture was refluxed for 12 h. After cooling, the mixture was poured onto crushed ice. The crude title compound was purified by recrystalization from trichloromethane. Yield is 82% and melting point is 439 K. Yellow blocks of (I) were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

All the H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The dashed lines indicate short C—H···O contacts.
2-[3,4-Dibutoxy-5-(5-phenyl-1,3,4-oxadiazol-2-yl)-2-thienyl]- 5-phenyl-1,3,4-oxadiazole top
Crystal data top
C28H28N4O4SF(000) = 1088
Mr = 516.60Dx = 1.302 Mg m3
Monoclinic, P21/cMelting point: 421 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.6770 (15) ÅCell parameters from 25 reflections
b = 16.871 (3) Åθ = 8–12°
c = 20.398 (4) ŵ = 0.16 mm1
β = 93.77 (3)°T = 293 K
V = 2636.2 (9) Å3Block, yellow
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.2°, θmin = 1.6°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.953, Tmax = 0.992l = 024
5100 measured reflections3 standard reflections every 200 reflections
4722 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
4722 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.21 e Å3
216 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H28N4O4SV = 2636.2 (9) Å3
Mr = 516.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6770 (15) ŵ = 0.16 mm1
b = 16.871 (3) ÅT = 293 K
c = 20.398 (4) Å0.30 × 0.10 × 0.05 mm
β = 93.77 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1918 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.953, Tmax = 0.9923 standard reflections every 200 reflections
5100 measured reflections intensity decay: none
4722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.087216 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
4722 reflectionsΔρmin = 0.19 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.33758 (19)0.11570 (10)0.45424 (7)0.0779 (5)
O10.1262 (5)0.0185 (3)0.57876 (19)0.0886 (13)
O20.1425 (5)0.1444 (3)0.6260 (2)0.1014 (14)
O30.2220 (4)0.1120 (2)0.46996 (16)0.0660 (9)
O40.2964 (4)0.2925 (2)0.58119 (17)0.0745 (10)
N10.3116 (6)0.1309 (3)0.3736 (2)0.0812 (13)
N20.3341 (6)0.0491 (3)0.3892 (2)0.0889 (14)
N30.3550 (7)0.2952 (3)0.4784 (2)0.0961 (16)
N40.3787 (7)0.3714 (3)0.5034 (3)0.1047 (17)
C10.3901 (9)0.1927 (4)0.6908 (3)0.117 (2)
H1B0.45300.21450.72890.176*
H1C0.35840.23460.66050.176*
H1D0.46250.15500.67020.176*
C20.2296 (10)0.1526 (4)0.7109 (4)0.123 (2)
H2A0.26390.11350.74420.147*
H2B0.15800.19170.73130.147*
C30.1260 (9)0.1145 (4)0.6610 (3)0.103 (2)
H3B0.08970.15410.62840.124*
H3C0.02130.09550.68010.124*
C40.2018 (10)0.0482 (4)0.6267 (4)0.124 (3)
H4A0.31490.06550.61360.148*
H4B0.22340.00620.65870.148*
C50.1109 (8)0.0976 (4)0.8310 (3)0.110 (2)
H5A0.01770.06230.84060.165*
H5B0.21900.06880.83260.165*
H5C0.11890.13940.86290.165*
C60.0773 (10)0.1303 (5)0.7676 (4)0.133 (3)
H6A0.07100.08470.73860.160*
H6B0.04110.15030.76770.160*
C70.1689 (10)0.1895 (4)0.7319 (3)0.121 (3)
H7A0.25150.21680.76200.145*
H7B0.08580.22820.71370.145*
C80.2609 (9)0.1551 (4)0.6795 (3)0.0933 (19)
H8A0.31130.10460.69330.112*
H8B0.35440.18990.66790.112*
C90.1390 (10)0.4056 (5)0.4462 (4)0.121 (2)
H9A0.11990.45960.45120.146*
C100.2049 (9)0.3780 (4)0.3906 (3)0.106 (2)
H10A0.22780.41430.35790.127*
C110.2395 (8)0.3001 (4)0.3801 (3)0.0958 (19)
H11A0.28250.28330.34090.115*
C120.2091 (6)0.2467 (4)0.4291 (3)0.0761 (15)
C130.1422 (8)0.2760 (4)0.4859 (3)0.0948 (19)
H13A0.12410.24100.52000.114*
C140.1013 (9)0.3556 (5)0.4938 (4)0.112 (2)
H14A0.04940.37330.53100.134*
C150.2477 (6)0.1639 (4)0.4222 (3)0.0686 (14)
C160.2767 (6)0.0429 (4)0.4483 (3)0.0697 (14)
C170.2698 (6)0.0266 (3)0.4849 (3)0.070
C180.1997 (7)0.0394 (4)0.5486 (3)0.0780 (15)
C190.2193 (7)0.1189 (4)0.5687 (3)0.0821 (16)
C200.2853 (7)0.1688 (4)0.5252 (3)0.0726 (14)
C210.3116 (7)0.2500 (4)0.5263 (3)0.0748 (15)
C220.3433 (7)0.3675 (4)0.5646 (3)0.0733 (15)
C230.3445 (6)0.4282 (4)0.6127 (3)0.0758 (15)
C240.3920 (8)0.5050 (4)0.5971 (3)0.0933 (18)
H24A0.41890.51530.55410.112*
C250.4019 (8)0.5676 (4)0.6419 (3)0.106 (2)
H25A0.43900.61780.63010.127*
C260.3544 (8)0.5514 (4)0.7040 (3)0.099 (2)
H26A0.35600.59210.73480.119*
C270.3070 (8)0.4807 (5)0.7213 (3)0.0974 (19)
H27A0.27740.47250.76420.117*
C280.2985 (8)0.4146 (4)0.6764 (3)0.0991 (19)
H28A0.26350.36460.68960.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0735 (9)0.0961 (11)0.0650 (8)0.0052 (9)0.0125 (7)0.0064 (9)
O10.079 (3)0.127 (4)0.063 (2)0.007 (3)0.025 (2)0.022 (3)
O20.096 (3)0.123 (4)0.088 (3)0.002 (3)0.025 (3)0.004 (3)
O30.055 (2)0.078 (2)0.066 (2)0.0061 (19)0.0101 (16)0.005 (2)
O40.073 (2)0.080 (3)0.071 (2)0.004 (2)0.0025 (18)0.003 (2)
N10.067 (3)0.107 (4)0.070 (3)0.011 (3)0.004 (2)0.008 (3)
N20.081 (3)0.113 (4)0.074 (3)0.020 (3)0.011 (2)0.009 (3)
N30.104 (4)0.097 (4)0.088 (3)0.016 (3)0.016 (3)0.011 (3)
N40.122 (4)0.103 (4)0.093 (3)0.013 (3)0.036 (3)0.010 (3)
C10.120 (6)0.126 (6)0.107 (5)0.018 (5)0.014 (4)0.015 (5)
C20.140 (7)0.112 (6)0.117 (6)0.013 (5)0.010 (5)0.011 (5)
C30.105 (5)0.103 (5)0.102 (5)0.003 (4)0.010 (4)0.020 (5)
C40.134 (7)0.107 (6)0.127 (7)0.011 (5)0.019 (5)0.012 (5)
C50.096 (5)0.122 (6)0.112 (5)0.004 (4)0.008 (4)0.019 (5)
C60.145 (7)0.129 (7)0.128 (7)0.001 (6)0.028 (6)0.002 (6)
C70.149 (7)0.128 (7)0.087 (5)0.006 (6)0.010 (5)0.010 (5)
C80.110 (5)0.094 (5)0.076 (4)0.012 (4)0.007 (4)0.003 (4)
C90.132 (6)0.105 (5)0.127 (5)0.021 (4)0.002 (5)0.011 (4)
C100.121 (5)0.097 (4)0.099 (4)0.008 (4)0.003 (4)0.013 (4)
C110.100 (4)0.088 (4)0.103 (4)0.001 (4)0.027 (4)0.007 (4)
C120.049 (3)0.102 (4)0.076 (4)0.014 (3)0.000 (3)0.008 (3)
C130.096 (4)0.107 (4)0.082 (4)0.015 (4)0.014 (3)0.018 (4)
C140.112 (5)0.118 (5)0.105 (5)0.005 (4)0.010 (4)0.028 (4)
C150.056 (3)0.087 (4)0.063 (3)0.009 (3)0.014 (3)0.009 (3)
C160.053 (3)0.087 (4)0.070 (3)0.001 (3)0.012 (3)0.006 (3)
C170.0700.0700.0700.0000.0050.000
C180.068 (4)0.086 (4)0.079 (4)0.015 (3)0.001 (3)0.005 (3)
C190.072 (3)0.110 (4)0.067 (3)0.004 (3)0.026 (3)0.002 (3)
C200.067 (3)0.089 (4)0.062 (3)0.005 (3)0.006 (3)0.005 (3)
C210.062 (3)0.093 (4)0.069 (4)0.006 (3)0.002 (3)0.000 (3)
C220.057 (3)0.081 (4)0.082 (4)0.012 (3)0.004 (3)0.006 (3)
C230.052 (3)0.095 (4)0.082 (4)0.002 (3)0.016 (3)0.001 (3)
C240.093 (4)0.101 (4)0.085 (4)0.006 (4)0.002 (3)0.002 (3)
C250.103 (5)0.100 (4)0.117 (5)0.001 (4)0.026 (4)0.005 (4)
C260.085 (4)0.113 (5)0.098 (4)0.003 (4)0.005 (3)0.021 (4)
C270.086 (4)0.129 (5)0.078 (4)0.011 (4)0.012 (3)0.010 (4)
C280.100 (4)0.102 (4)0.096 (4)0.003 (4)0.018 (4)0.003 (4)
Geometric parameters (Å, º) top
S—C171.722 (5)C7—C81.442 (7)
S—C201.771 (5)C7—H7A0.9700
O1—C41.212 (7)C7—H7B0.9700
O1—C181.302 (6)C8—H8A0.9700
O2—C81.385 (6)C8—H8B0.9700
O2—C191.410 (6)C9—C141.331 (8)
O3—C161.325 (6)C9—C101.355 (8)
O3—C151.334 (6)C9—H9A0.9300
O4—C211.341 (6)C10—C111.361 (8)
O4—C221.365 (6)C10—H10A0.9300
N1—C151.264 (6)C11—C121.376 (7)
N1—N21.423 (6)C11—H11A0.9300
N2—C161.315 (6)C12—C131.389 (7)
N3—C211.300 (7)C12—C151.437 (8)
N3—N41.390 (6)C13—C141.391 (8)
N4—C221.296 (6)C13—H13A0.9300
C1—C21.487 (8)C14—H14A0.9300
C1—H1B0.9600C16—C171.392 (7)
C1—H1C0.9600C17—C181.455 (7)
C1—H1D0.9600C18—C191.408 (8)
C2—C31.406 (8)C19—C201.346 (7)
C2—H2A0.9700C20—C211.385 (7)
C2—H2B0.9700C22—C231.418 (7)
C3—C41.461 (8)C23—C281.387 (7)
C3—H3B0.9700C23—C241.390 (7)
C3—H3C0.9700C24—C251.395 (8)
C4—H4A0.9700C24—H24A0.9300
C4—H4B0.9700C25—C261.370 (8)
C5—C61.414 (8)C25—H25A0.9300
C5—H5A0.9600C26—C271.303 (8)
C5—H5B0.9600C26—H26A0.9300
C5—H5C0.9600C27—C281.442 (8)
C6—C71.445 (8)C27—H27A0.9300
C6—H6A0.9700C28—H28A0.9300
C6—H6B0.9700
C17—S—C2093.1 (3)C10—C9—H9A119.8
C4—O1—C18119.5 (6)C9—C10—C11123.3 (7)
C8—O2—C19113.8 (5)C9—C10—H10A118.3
C16—O3—C15105.6 (4)C11—C10—H10A118.3
C21—O4—C22104.5 (5)C10—C11—C12118.3 (7)
C15—N1—N2107.5 (5)C10—C11—H11A120.8
C16—N2—N1103.8 (5)C12—C11—H11A120.8
C21—N3—N4107.5 (5)C11—C12—C13117.6 (6)
C22—N4—N3106.0 (5)C11—C12—C15121.3 (6)
C2—C1—H1B109.5C13—C12—C15121.1 (6)
C2—C1—H1C109.5C12—C13—C14122.5 (7)
H1B—C1—H1C109.5C12—C13—H13A118.7
C2—C1—H1D109.5C14—C13—H13A118.7
H1B—C1—H1D109.5C9—C14—C13117.8 (7)
H1C—C1—H1D109.5C9—C14—H14A121.1
C3—C2—C1116.7 (6)C13—C14—H14A121.1
C3—C2—H2A108.1N1—C15—O3111.5 (5)
C1—C2—H2A108.1N1—C15—C12126.8 (6)
C3—C2—H2B108.1O3—C15—C12121.7 (5)
C1—C2—H2B108.1N2—C16—O3111.6 (5)
H2A—C2—H2B107.3N2—C16—C17125.9 (6)
C2—C3—C4118.2 (7)O3—C16—C17122.5 (5)
C2—C3—H3B107.8C16—C17—C18129.3 (5)
C4—C3—H3B107.8C16—C17—S121.1 (4)
C2—C3—H3C107.8C18—C17—S109.4 (4)
C4—C3—H3C107.8O1—C18—C19128.2 (5)
H3B—C3—H3C107.1O1—C18—C17120.5 (5)
O1—C4—C3121.2 (7)C19—C18—C17111.3 (6)
O1—C4—H4A107.0C20—C19—C18116.2 (5)
C3—C4—H4A107.0C20—C19—O2123.5 (6)
O1—C4—H4B107.0C18—C19—O2119.3 (5)
C3—C4—H4B107.0C19—C20—C21132.0 (6)
H4A—C4—H4B106.8C19—C20—S109.8 (5)
C6—C5—H5A109.5C21—C20—S118.2 (5)
C6—C5—H5B109.5N3—C21—O4110.7 (6)
H5A—C5—H5B109.5N3—C21—C20127.8 (6)
C6—C5—H5C109.5O4—C21—C20121.5 (6)
H5A—C5—H5C109.5N4—C22—O4111.2 (6)
H5B—C5—H5C109.5N4—C22—C23129.6 (6)
C5—C6—C7131.6 (7)O4—C22—C23119.1 (5)
C5—C6—H6A104.3C28—C23—C24117.1 (6)
C7—C6—H6A104.3C28—C23—C22122.6 (6)
C5—C6—H6B104.3C24—C23—C22120.3 (6)
C7—C6—H6B104.3C23—C24—C25124.1 (6)
H6A—C6—H6B105.6C23—C24—H24A118.0
C8—C7—C6111.9 (7)C25—C24—H24A118.0
C8—C7—H7A109.2C26—C25—C24116.7 (7)
C6—C7—H7A109.2C26—C25—H25A121.7
C8—C7—H7B109.2C24—C25—H25A121.7
C6—C7—H7B109.2C27—C26—C25121.9 (7)
H7A—C7—H7B107.9C27—C26—H26A119.1
O2—C8—C7108.0 (6)C25—C26—H26A119.1
O2—C8—H8A110.1C26—C27—C28122.6 (7)
C7—C8—H8A110.1C26—C27—H27A118.7
O2—C8—H8B110.1C28—C27—H27A118.7
C7—C8—H8B110.1C23—C28—C27117.6 (6)
H8A—C8—H8B108.4C23—C28—H28A121.2
C14—C9—C10120.3 (8)C27—C28—H28A121.2
C14—C9—H9A119.8
C15—N1—N2—C160.4 (6)C16—C17—C18—C19179.6 (5)
C21—N3—N4—C221.7 (7)S—C17—C18—C194.3 (6)
C1—C2—C3—C463.0 (10)O1—C18—C19—C20173.6 (5)
C18—O1—C4—C3178.5 (6)C17—C18—C19—C204.5 (7)
C2—C3—C4—O1172.1 (7)O1—C18—C19—O24.8 (9)
C5—C6—C7—C8107.2 (9)C17—C18—C19—O2173.3 (5)
C19—O2—C8—C7173.6 (6)C8—O2—C19—C2087.0 (7)
C6—C7—C8—O281.9 (7)C8—O2—C19—C18105.1 (6)
C14—C9—C10—C111.2 (12)C18—C19—C20—C21175.3 (6)
C9—C10—C11—C121.3 (11)O2—C19—C20—C217.0 (10)
C10—C11—C12—C131.0 (9)C18—C19—C20—S2.5 (7)
C10—C11—C12—C15178.0 (6)O2—C19—C20—S170.8 (4)
C11—C12—C13—C141.9 (9)C17—S—C20—C190.2 (4)
C15—C12—C13—C14179.1 (6)C17—S—C20—C21178.3 (5)
C10—C9—C14—C134.0 (11)N4—N3—C21—O43.1 (7)
C12—C13—C14—C94.4 (10)N4—N3—C21—C20175.8 (5)
N2—N1—C15—O30.7 (6)C22—O4—C21—N33.2 (6)
N2—N1—C15—C12177.7 (5)C22—O4—C21—C20175.8 (5)
C16—O3—C15—N10.7 (6)C19—C20—C21—N3170.1 (6)
C16—O3—C15—C12177.7 (5)S—C20—C21—N37.5 (8)
C11—C12—C15—N10.4 (9)C19—C20—C21—O411.1 (10)
C13—C12—C15—N1178.6 (5)S—C20—C21—O4171.3 (4)
C11—C12—C15—O3178.6 (5)N3—N4—C22—O40.3 (7)
C13—C12—C15—O30.4 (8)N3—N4—C22—C23179.2 (5)
N1—N2—C16—O30.1 (6)C21—O4—C22—N42.1 (6)
N1—N2—C16—C17179.2 (5)C21—O4—C22—C23178.9 (5)
C15—O3—C16—N20.4 (6)N4—C22—C23—C28178.3 (6)
C15—O3—C16—C17179.6 (5)O4—C22—C23—C280.5 (8)
N2—C16—C17—C18176.2 (5)N4—C22—C23—C241.3 (9)
O3—C16—C17—C182.9 (9)O4—C22—C23—C24179.9 (5)
N2—C16—C17—S0.5 (8)C28—C23—C24—C252.4 (9)
O3—C16—C17—S178.5 (4)C22—C23—C24—C25178.0 (6)
C20—S—C17—C16179.0 (5)C23—C24—C25—C262.7 (10)
C20—S—C17—C182.6 (4)C24—C25—C26—C271.9 (10)
C4—O1—C18—C1974.6 (9)C25—C26—C27—C280.9 (11)
C4—O1—C18—C17107.4 (7)C24—C23—C28—C271.1 (8)
C16—C17—C18—O12.1 (9)C22—C23—C28—C27179.2 (5)
S—C17—C18—O1174.0 (4)C26—C27—C28—C230.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.602.973 (9)103
C8—H8B···O40.972.493.089 (7)120
C13—H13A···O30.932.542.857 (8)100

Experimental details

Crystal data
Chemical formulaC28H28N4O4S
Mr516.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6770 (15), 16.871 (3), 20.398 (4)
β (°) 93.77 (3)
V3)2636.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.953, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5100, 4722, 1918
Rint0.026
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.203, 1.00
No. of reflections4722
No. of parameters328
No. of restraints216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.602.973 (9)103
C8—H8B···O40.972.493.089 (7)120
C13—H13A···O30.932.542.857 (8)100
 

References

First citationBrault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBugatti, V., Concilio, S., Iannelli, P., Piotto, S. P., Bellone, S., Ferrara, M., Neitzert, H. C., Rubino, A., Della Sala, D. & Vacca, P. (2006). Synth. Met. 156, 13–20.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds