organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-3,4,5-tri­meth­oxy­benzohydrazide methanol solvate

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and bCollege of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
*Correspondence e-mail: daohanghe@yahoo.com.cn

(Received 8 July 2008; accepted 28 July 2008; online 31 July 2008)

In the title compound, C17H17ClN2O4·CH4O, the dihedral angle between the benzene ring planes is 5.29 (6)°. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a chain along the a axis.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]), Bernardino et al. (2006[Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80-87.]); Ganjali et al. (2006[Ganjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119-124.]); Gardner et al. (1991[Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514-1530.]); Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.])

[Scheme 1]

Experimental

Crystal data
  • C17H17ClN2O4·CH4O

  • Mr = 380.82

  • Orthorhombic, P n a 21

  • a = 12.9356 (7) Å

  • b = 4.8718 (3) Å

  • c = 29.4119 (16) Å

  • V = 1853.53 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 (2) K

  • 0.48 × 0.40 × 0.39 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.913

  • 9008 measured reflections

  • 3916 independent reflections

  • 3561 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.09

  • 3916 reflections

  • 240 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1846 Friedel pairs

  • Flack parameter: 0.04 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.88 2.01 2.8673 (19) 165
O5—H5⋯O4 0.84 1.97 2.7904 (18) 166
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules involving Schiff bases have attracted much attention due to their diverse range of bioactivities in pharmaceutical and agrochemical field (e.g. Bernardino et al., 2006; Ganjali et al., 2006). We now report the synthesis and structure of the title compound, (I), obtained by the condensation of 3,4,5-trimethoxybenzohydrazide with 2-chlorobenzaldehyde as a methanol solvate (Fig. 1).

The bond lengths and bond angles for (I) are within normal ranges (Allen et al., 1987). The two benzene rings are approximately planar, with a dihedral angle of 5.29 (6)°. The methanol molecules in the crystal are lined to the Schiff base moieties through intermolecular N—H···O and O—H···O hydrogen bonds to form a chain along the a axis, which helps to consolidate the packing (Fig 2).

Related literature top

For related literature, see: Allen et al. (1987), Bernardino et al. (2006); Ganjali et al. (2006); Gardner et al. (1991); Patole et al. (2003)

Experimental top

A mixture of 3,4,5-trimethoxybenzohydrazide (1 mmol) and 2-chlorobenzaldehyde in anhydrous ethanol (10 ml) was refluxed for 2 h. When the solution was cooled to room temperature, some white needles separated out. After filtration, colorless blocks of (I) were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with N—H = 0.88 Å, O—H = 0.84 Å, C—H = 0.95 (aromatic and N=CH), 0.98 (methyl) Å) and Uiso(H) = xUeq(C, N, O), where x = 1.5 for the methyl and hydroxyl groups, x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. The dashed lines represent the hydrogen bonding interactions.
(I) top
Crystal data top
C17H17ClN2O4·CH4OF(000) = 800
Mr = 380.82Dx = 1.365 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5318 reflections
a = 12.9356 (7) Åθ = 2.6–27.0°
b = 4.8718 (3) ŵ = 0.24 mm1
c = 29.4119 (16) ÅT = 173 K
V = 1853.53 (18) Å3Block, colorless
Z = 40.48 × 0.40 × 0.39 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3916 independent reflections
Radiation source: fine-focus sealed tube3561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 168
Tmin = 0.895, Tmax = 0.913k = 56
9008 measured reflectionsl = 3736
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.039P)2 + 0.3064P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.012
3916 reflectionsΔρmax = 0.20 e Å3
240 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1846 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
C17H17ClN2O4·CH4OV = 1853.53 (18) Å3
Mr = 380.82Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.9356 (7) ŵ = 0.24 mm1
b = 4.8718 (3) ÅT = 173 K
c = 29.4119 (16) Å0.48 × 0.40 × 0.39 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3916 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3561 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.913Rint = 0.021
9008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.20 e Å3
S = 1.09Δρmin = 0.17 e Å3
3916 reflectionsAbsolute structure: Flack (1983), 1846 Friedel pairs
240 parametersAbsolute structure parameter: 0.04 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88399 (4)0.29291 (12)0.98890 (2)0.04522 (15)
C10.93423 (13)0.2105 (4)0.75620 (6)0.0215 (3)
C20.85309 (13)0.0229 (4)0.75340 (6)0.0211 (3)
H20.83520.08660.77890.025*
C30.79858 (12)0.0025 (3)0.71285 (6)0.0213 (3)
C40.82468 (13)0.1595 (3)0.67522 (6)0.0209 (3)
C50.90935 (13)0.3386 (4)0.67796 (6)0.0221 (3)
C60.96347 (13)0.3656 (4)0.71860 (6)0.0216 (3)
H61.02010.48920.72070.026*
C70.99585 (13)0.2484 (4)0.79886 (6)0.0231 (4)
C80.96354 (14)0.0864 (4)0.91319 (7)0.0308 (4)
H80.89490.01740.91210.037*
C91.02227 (15)0.0827 (4)0.95597 (6)0.0286 (4)
C100.99287 (15)0.0824 (4)0.99280 (7)0.0319 (4)
C111.04956 (19)0.0869 (5)1.03275 (7)0.0403 (5)
H111.02890.20291.05710.048*
C121.13525 (18)0.0753 (5)1.03723 (7)0.0435 (5)
H121.17310.07531.06490.052*
C131.16701 (18)0.2405 (5)1.00118 (7)0.0416 (5)
H131.22700.35171.00410.050*
C141.11093 (16)0.2419 (5)0.96120 (7)0.0362 (5)
H141.13340.35410.93670.043*
C150.69115 (15)0.3585 (4)0.74240 (6)0.0260 (4)
H15A0.75170.46610.75150.039*
H15B0.63610.48270.73240.039*
H15C0.66680.24970.76830.039*
C160.71561 (18)0.3559 (4)0.61922 (7)0.0386 (5)
H16A0.65810.39540.63990.058*
H16B0.68840.31750.58880.058*
H16C0.76190.51500.61790.058*
C171.01472 (14)0.6703 (4)0.63995 (7)0.0302 (4)
H17A0.99890.81110.66270.045*
H17B1.02170.75650.61000.045*
H17C1.07960.57850.64800.045*
C181.2215 (2)0.7735 (5)0.86998 (9)0.0501 (6)
H18A1.19030.77800.90030.075*
H18B1.17390.85690.84800.075*
H18C1.28660.87630.87030.075*
N10.94896 (12)0.1728 (3)0.83814 (5)0.0268 (3)
H10.88410.11850.83850.032*
N21.00645 (11)0.1840 (3)0.87756 (5)0.0269 (3)
O10.71872 (9)0.1791 (3)0.70587 (4)0.0259 (3)
O20.77131 (9)0.1235 (3)0.63530 (4)0.0259 (3)
O30.93290 (10)0.4729 (3)0.63872 (4)0.0308 (3)
O41.08391 (10)0.3399 (3)0.79778 (4)0.0298 (3)
O51.24118 (9)0.4964 (3)0.85732 (5)0.0328 (3)
H51.19000.43380.84310.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0469 (3)0.0485 (3)0.0403 (3)0.0043 (2)0.0087 (2)0.0094 (3)
C10.0212 (8)0.0249 (9)0.0183 (8)0.0027 (7)0.0023 (7)0.0007 (7)
C20.0216 (8)0.0220 (8)0.0196 (8)0.0027 (6)0.0005 (7)0.0018 (7)
C30.0197 (8)0.0211 (8)0.0231 (8)0.0018 (6)0.0002 (7)0.0038 (7)
C40.0212 (8)0.0242 (9)0.0171 (8)0.0044 (7)0.0033 (6)0.0027 (6)
C50.0219 (8)0.0239 (9)0.0205 (8)0.0015 (7)0.0007 (6)0.0009 (7)
C60.0205 (8)0.0243 (8)0.0201 (8)0.0005 (7)0.0017 (6)0.0003 (7)
C70.0219 (8)0.0280 (9)0.0195 (8)0.0017 (7)0.0028 (7)0.0007 (7)
C80.0255 (9)0.0425 (11)0.0244 (9)0.0010 (8)0.0022 (7)0.0010 (8)
C90.0308 (10)0.0370 (10)0.0179 (8)0.0040 (8)0.0003 (7)0.0002 (8)
C100.0353 (10)0.0339 (10)0.0266 (9)0.0074 (8)0.0055 (8)0.0001 (8)
C110.0580 (14)0.0406 (12)0.0221 (9)0.0135 (11)0.0047 (9)0.0069 (9)
C120.0540 (14)0.0538 (14)0.0227 (9)0.0139 (11)0.0115 (9)0.0045 (10)
C130.0419 (12)0.0519 (14)0.0309 (11)0.0028 (10)0.0109 (9)0.0042 (10)
C140.0397 (11)0.0458 (12)0.0233 (9)0.0009 (10)0.0031 (8)0.0043 (9)
C150.0269 (9)0.0232 (9)0.0278 (9)0.0019 (7)0.0025 (7)0.0004 (7)
C160.0433 (12)0.0374 (11)0.0351 (11)0.0081 (10)0.0179 (9)0.0010 (9)
C170.0269 (9)0.0345 (10)0.0293 (9)0.0029 (8)0.0006 (8)0.0078 (8)
C180.0638 (15)0.0453 (13)0.0412 (13)0.0120 (12)0.0099 (12)0.0078 (11)
N10.0206 (7)0.0415 (9)0.0184 (7)0.0044 (6)0.0041 (6)0.0019 (6)
N20.0257 (7)0.0370 (9)0.0180 (7)0.0010 (6)0.0053 (6)0.0009 (6)
O10.0263 (6)0.0282 (7)0.0232 (6)0.0049 (5)0.0047 (5)0.0008 (5)
O20.0292 (6)0.0276 (6)0.0208 (6)0.0011 (5)0.0064 (5)0.0028 (5)
O30.0309 (6)0.0399 (7)0.0217 (6)0.0096 (6)0.0052 (6)0.0076 (6)
O40.0243 (6)0.0426 (8)0.0225 (7)0.0089 (6)0.0040 (5)0.0029 (6)
O50.0231 (6)0.0405 (7)0.0347 (7)0.0025 (6)0.0042 (5)0.0078 (6)
Geometric parameters (Å, º) top
Cl1—C101.746 (2)C12—H120.9500
C1—C61.392 (2)C13—C141.382 (3)
C1—C21.394 (2)C13—H130.9500
C1—C71.498 (2)C14—H140.9500
C2—C31.391 (2)C15—O11.430 (2)
C2—H20.9500C15—H15A0.9800
C3—O11.360 (2)C15—H15B0.9800
C3—C41.401 (2)C15—H15C0.9800
C4—O21.373 (2)C16—O21.423 (2)
C4—C51.402 (2)C16—H16A0.9800
C5—O31.361 (2)C16—H16B0.9800
C5—C61.391 (2)C16—H16C0.9800
C6—H60.9500C17—O31.430 (2)
C7—O41.224 (2)C17—H17A0.9800
C7—N11.356 (2)C17—H17B0.9800
C8—N21.278 (2)C17—H17C0.9800
C8—C91.470 (2)C18—O51.423 (3)
C8—H80.9500C18—H18A0.9800
C9—C141.393 (3)C18—H18B0.9800
C9—C101.402 (3)C18—H18C0.9800
C10—C111.385 (3)N1—N21.378 (2)
C11—C121.368 (3)N1—H10.8800
C11—H110.9500O5—H50.8400
C12—C131.393 (3)
C6—C1—C2120.90 (15)C14—C13—H13120.1
C6—C1—C7117.00 (15)C12—C13—H13120.1
C2—C1—C7122.07 (14)C13—C14—C9121.6 (2)
C3—C2—C1119.38 (15)C13—C14—H14119.2
C3—C2—H2120.3C9—C14—H14119.2
C1—C2—H2120.3O1—C15—H15A109.5
O1—C3—C2124.80 (15)O1—C15—H15B109.5
O1—C3—C4114.85 (15)H15A—C15—H15B109.5
C2—C3—C4120.34 (15)O1—C15—H15C109.5
O2—C4—C3118.83 (15)H15A—C15—H15C109.5
O2—C4—C5121.43 (15)H15B—C15—H15C109.5
C3—C4—C5119.55 (14)O2—C16—H16A109.5
O3—C5—C6124.76 (15)O2—C16—H16B109.5
O3—C5—C4115.15 (14)H16A—C16—H16B109.5
C6—C5—C4120.09 (15)O2—C16—H16C109.5
C5—C6—C1119.63 (16)H16A—C16—H16C109.5
C5—C6—H6120.2H16B—C16—H16C109.5
C1—C6—H6120.2O3—C17—H17A109.5
O4—C7—N1122.52 (16)O3—C17—H17B109.5
O4—C7—C1121.23 (15)H17A—C17—H17B109.5
N1—C7—C1116.24 (15)O3—C17—H17C109.5
N2—C8—C9118.82 (17)H17A—C17—H17C109.5
N2—C8—H8120.6H17B—C17—H17C109.5
C9—C8—H8120.6O5—C18—H18A109.5
C14—C9—C10117.21 (17)O5—C18—H18B109.5
C14—C9—C8120.89 (18)H18A—C18—H18B109.5
C10—C9—C8121.89 (18)O5—C18—H18C109.5
C11—C10—C9121.40 (19)H18A—C18—H18C109.5
C11—C10—Cl1118.27 (16)H18B—C18—H18C109.5
C9—C10—Cl1120.33 (15)C7—N1—N2117.68 (14)
C12—C11—C10120.1 (2)C7—N1—H1121.2
C12—C11—H11119.9N2—N1—H1121.2
C10—C11—H11119.9C8—N2—N1116.16 (15)
C11—C12—C13119.97 (19)C3—O1—C15117.56 (13)
C11—C12—H12120.0C4—O2—C16115.90 (14)
C13—C12—H12120.0C5—O3—C17117.86 (14)
C14—C13—C12119.7 (2)C18—O5—H5109.5
C6—C1—C2—C32.2 (2)C14—C9—C10—C110.1 (3)
C7—C1—C2—C3179.86 (15)C8—C9—C10—C11179.16 (19)
C1—C2—C3—O1179.51 (15)C14—C9—C10—Cl1178.94 (15)
C1—C2—C3—C40.2 (2)C8—C9—C10—Cl10.2 (3)
O1—C3—C4—O21.7 (2)C9—C10—C11—C121.1 (3)
C2—C3—C4—O2178.07 (15)Cl1—C10—C11—C12179.86 (17)
O1—C3—C4—C5176.74 (15)C10—C11—C12—C131.5 (3)
C2—C3—C4—C53.0 (2)C11—C12—C13—C140.7 (3)
O2—C4—C5—O30.7 (2)C12—C13—C14—C90.5 (3)
C3—C4—C5—O3175.62 (15)C10—C9—C14—C130.8 (3)
O2—C4—C5—C6178.40 (16)C8—C9—C14—C13180.0 (2)
C3—C4—C5—C63.5 (2)O4—C7—N1—N24.4 (3)
O3—C5—C6—C1177.87 (16)C1—C7—N1—N2174.82 (16)
C4—C5—C6—C11.1 (3)C9—C8—N2—N1177.74 (17)
C2—C1—C6—C51.7 (3)C7—N1—N2—C8173.39 (17)
C7—C1—C6—C5179.79 (15)C2—C3—O1—C152.3 (2)
C6—C1—C7—O421.9 (3)C4—C3—O1—C15177.43 (14)
C2—C1—C7—O4156.15 (17)C3—C4—O2—C16118.71 (19)
C6—C1—C7—N1158.87 (16)C5—C4—O2—C1666.3 (2)
C2—C1—C7—N123.1 (2)C6—C5—O3—C174.5 (3)
N2—C8—C9—C1416.3 (3)C4—C5—O3—C17176.48 (15)
N2—C8—C9—C10162.78 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.882.012.8673 (19)165
O5—H5···O40.841.972.7904 (18)166
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H17ClN2O4·CH4O
Mr380.82
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)12.9356 (7), 4.8718 (3), 29.4119 (16)
V3)1853.53 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.40 × 0.39
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.895, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
9008, 3916, 3561
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.09
No. of reflections3916
No. of parameters240
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17
Absolute structureFlack (1983), 1846 Friedel pairs
Absolute structure parameter0.04 (5)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.882.012.8673 (19)165
O5—H5···O40.841.972.7904 (18)166
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Natural Science Youth Foundation of South China University of Technology for financial assistance (E5050570).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119–124.  Web of Science CrossRef CAS Google Scholar
First citationGardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514–1530.  CrossRef Web of Science Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds