organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-(4-bromo­benzyl­­idene)hydrazine­carboxyl­ate

aMarine College, Zhejiang Institute of Communications, Hangzhou 311112, People's Republic of China
*Correspondence e-mail: bgao_zjvtit@126.com

(Received 14 July 2008; accepted 27 July 2008; online 31 July 2008)

The title compound, C10H11BrN2O2, crystallizes with two independent mol­ecules in the asymmetric unit, in which the dihedral angles between the benzene ring and the hydrazine carboxylic acid mean plane are 3.0 (4) and 45.3 (3)°. The mol­ecules are linked into a one-dimensional network by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al.(1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11BrN2O2

  • Mr = 271.11

  • Monoclinic, P 21 /c

  • a = 16.499 (3) Å

  • b = 8.6052 (19) Å

  • c = 18.277 (4) Å

  • β = 116.279 (7)°

  • V = 2326.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 123 (2) K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.419, Tmax = 0.474 (expected range = 0.367–0.415)

  • 24092 measured reflections

  • 4075 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.259

  • S = 0.88

  • 4075 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.09 2.913 (7) 161
N4—H4A⋯O1i 0.86 2.09 2.875 (7) 152
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates for 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, (I), is reported here (Fig. 1).

Compound (I) crystallizes with two independent but essentially identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. In each molecule, the hydrazine carboxylic acid methyl ester group is twisted away from the attached ring. The dihedral angle between C1-C6 and N1/N2/O1/O2/C8-C10 planes is 3.0 (4)° and that between C11-C16 and N3/N4/O3/O4/C18 planes is 45.3 (3)°. The bond lengths and angles of each molecule in the asymmetric unit agree with those observed for methyl N'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

In the crystal of (I), the molecules are linked into a one-dimensional network by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al.(1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental top

4-Bromobenzaldehyde (1.84 g, 0.01 mol) and ethyl hydrazinecarboxylate (1.04g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Colourless blocks of (I) were obtained by slow evaporation of a methanol solution at room temperature (m.p. 433–435 K).

Refinement top

The H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.95-0.99Å) and refined as riding, with Uiso(H) = 1.2–1.5Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.
(E)-Ethyl N'-(4-bromobenzylidene)hydrazinecarboxylate top
Crystal data top
C10H11BrN2O2F(000) = 1088
Mr = 271.11Dx = 1.548 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4075 reflections
a = 16.499 (3) Åθ = 1.4–25.0°
b = 8.6052 (19) ŵ = 3.52 mm1
c = 18.277 (4) ÅT = 123 K
β = 116.279 (7)°Block, colourless
V = 2326.7 (8) Å30.30 × 0.26 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1918
Tmin = 0.419, Tmax = 0.474k = 910
24092 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.259H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.1543P)2]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
C10H11BrN2O2V = 2326.7 (8) Å3
Mr = 271.11Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.499 (3) ŵ = 3.52 mm1
b = 8.6052 (19) ÅT = 123 K
c = 18.277 (4) Å0.30 × 0.26 × 0.25 mm
β = 116.279 (7)°
Data collection top
Bruker SMART CCD
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1989 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 0.474Rint = 0.139
24092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.259H-atom parameters constrained
S = 0.88Δρmax = 1.35 e Å3
4075 reflectionsΔρmin = 1.10 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38953 (6)0.41924 (14)0.35560 (6)0.1017 (5)
O10.1467 (3)0.9272 (6)0.6334 (3)0.0683 (15)
O20.2401 (3)0.9406 (6)0.5725 (3)0.0683 (14)
N10.0294 (4)0.7619 (7)0.4990 (3)0.0547 (14)
N20.1102 (4)0.8180 (7)0.5084 (3)0.0591 (16)
H2A0.12710.80160.47080.071*
C10.1496 (5)0.5277 (9)0.3484 (4)0.0614 (19)
H10.12260.50780.31300.074*
C20.2340 (6)0.4681 (9)0.3288 (4)0.068 (2)
H20.26570.41030.28010.082*
C30.2716 (5)0.4947 (10)0.3822 (5)0.069 (2)
C40.2254 (6)0.5766 (10)0.4538 (5)0.079 (2)
H40.25130.59280.49050.094*
C50.1413 (5)0.6341 (10)0.4709 (4)0.069 (2)
H50.10870.68820.52080.082*
C60.1020 (5)0.6165 (8)0.4185 (4)0.0540 (17)
C70.0147 (5)0.6797 (9)0.4356 (4)0.0566 (18)
H70.01060.65980.39880.068*
C80.1647 (5)0.8967 (9)0.5765 (4)0.0593 (19)
C90.3059 (5)1.0219 (11)0.6442 (4)0.075 (2)
H9A0.32530.95470.69300.090*
H9B0.27891.11780.65390.090*
C100.3843 (6)1.0610 (15)0.6288 (6)0.113 (4)
H10A0.42831.12080.67490.170*
H10B0.36391.12300.57880.170*
H10C0.41260.96500.62250.170*
Br20.40506 (7)0.72172 (16)0.13867 (7)0.1115 (5)
O30.2037 (4)0.7286 (7)0.4120 (3)0.0764 (16)
O40.2853 (3)0.6993 (6)0.3405 (3)0.0672 (14)
N30.0511 (4)0.7304 (7)0.2633 (3)0.0555 (15)
N40.1369 (4)0.7146 (7)0.2717 (3)0.0589 (15)
H4A0.14610.70480.22910.071*
C110.2224 (5)0.8208 (9)0.2063 (5)0.065 (2)
H110.24100.89500.23420.078*
C120.2835 (6)0.7232 (10)0.1526 (5)0.072 (2)
C130.2584 (6)0.6157 (10)0.1077 (4)0.074 (2)
H130.30170.54770.06930.089*
C140.1333 (5)0.8142 (9)0.2212 (4)0.063 (2)
H140.09040.88210.26010.075*
C150.1705 (5)0.6125 (9)0.1210 (4)0.064 (2)
H150.15320.54350.08980.076*
C160.1055 (5)0.7070 (8)0.1786 (4)0.0530 (17)
C170.0116 (5)0.6937 (8)0.1946 (4)0.0549 (18)
H170.00290.65690.15290.066*
C180.2083 (5)0.7143 (9)0.3472 (4)0.0604 (19)
C190.3667 (6)0.6862 (12)0.4155 (5)0.087 (3)
H19A0.36910.58390.44110.105*
H19B0.36890.76860.45410.105*
C200.4441 (7)0.7027 (18)0.3950 (8)0.134 (5)
H20A0.50090.69580.44510.201*
H20B0.44060.80380.36910.201*
H20C0.44180.61960.35750.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0722 (7)0.1265 (10)0.1016 (8)0.0210 (5)0.0342 (6)0.0047 (6)
O10.076 (4)0.094 (4)0.044 (3)0.011 (3)0.035 (3)0.005 (2)
O20.054 (3)0.110 (4)0.048 (3)0.014 (3)0.029 (2)0.005 (3)
N10.053 (4)0.068 (4)0.049 (3)0.001 (3)0.028 (3)0.004 (3)
N20.053 (4)0.091 (5)0.037 (3)0.003 (3)0.024 (3)0.005 (3)
C10.078 (6)0.063 (5)0.051 (4)0.001 (4)0.036 (4)0.001 (4)
C20.081 (6)0.073 (5)0.050 (4)0.008 (5)0.028 (4)0.003 (4)
C30.065 (5)0.069 (5)0.065 (5)0.003 (4)0.022 (4)0.005 (4)
C40.076 (6)0.104 (7)0.068 (5)0.001 (5)0.043 (4)0.009 (5)
C50.072 (5)0.088 (6)0.052 (4)0.012 (5)0.033 (4)0.011 (4)
C60.062 (5)0.058 (4)0.044 (4)0.007 (4)0.026 (3)0.004 (3)
C70.057 (4)0.073 (5)0.044 (4)0.006 (4)0.027 (4)0.003 (4)
C80.052 (4)0.076 (5)0.048 (4)0.005 (4)0.020 (4)0.015 (4)
C90.063 (5)0.102 (6)0.056 (5)0.016 (5)0.023 (4)0.001 (4)
C100.073 (7)0.173 (12)0.080 (6)0.040 (7)0.021 (5)0.003 (7)
Br20.0600 (7)0.1507 (11)0.1204 (9)0.0002 (6)0.0369 (6)0.0102 (7)
O30.082 (4)0.108 (4)0.050 (3)0.009 (3)0.038 (3)0.003 (3)
O40.054 (3)0.101 (4)0.052 (3)0.004 (3)0.028 (2)0.001 (3)
N30.058 (4)0.067 (4)0.055 (4)0.005 (3)0.037 (3)0.007 (3)
N40.062 (4)0.077 (4)0.046 (3)0.001 (3)0.032 (3)0.003 (3)
C110.063 (5)0.069 (5)0.072 (5)0.002 (4)0.037 (4)0.012 (4)
C120.065 (5)0.085 (6)0.056 (4)0.001 (4)0.020 (4)0.014 (4)
C130.083 (6)0.077 (6)0.050 (4)0.015 (5)0.019 (4)0.008 (4)
C140.073 (5)0.066 (5)0.054 (4)0.000 (4)0.032 (4)0.007 (4)
C150.066 (5)0.076 (5)0.049 (4)0.004 (4)0.026 (4)0.008 (4)
C160.069 (5)0.053 (4)0.041 (3)0.003 (4)0.027 (3)0.005 (3)
C170.065 (5)0.064 (5)0.041 (4)0.009 (4)0.029 (4)0.001 (3)
C180.067 (5)0.064 (5)0.057 (5)0.001 (4)0.033 (4)0.002 (4)
C190.079 (6)0.116 (8)0.063 (5)0.008 (5)0.027 (5)0.001 (5)
C200.065 (7)0.215 (15)0.112 (8)0.001 (7)0.030 (6)0.005 (9)
Geometric parameters (Å, º) top
Br1—C31.899 (8)Br2—C121.907 (8)
O1—C81.229 (8)O3—C181.226 (8)
O2—C81.333 (9)O4—C181.335 (9)
O2—C91.458 (9)O4—C191.437 (10)
N1—C71.275 (8)N3—C171.264 (8)
N1—N21.355 (8)N3—N41.360 (8)
N2—C81.352 (9)N4—C181.361 (9)
N2—H2A0.8600N4—H4A0.8601
C1—C21.374 (10)C11—C121.344 (11)
C1—C61.396 (10)C11—C141.372 (10)
C1—H10.9500C11—H110.9500
C2—C31.387 (10)C12—C131.415 (12)
C2—H20.9500C13—C151.360 (11)
C3—C41.381 (11)C13—H130.9500
C4—C51.373 (11)C14—C161.407 (10)
C4—H40.9500C14—H140.9500
C5—C61.382 (10)C15—C161.386 (10)
C5—H50.9500C15—H150.9500
C6—C71.439 (10)C16—C171.447 (10)
C7—H70.9500C17—H170.9500
C9—C101.478 (11)C19—C201.487 (14)
C9—H9A0.9900C19—H19A0.9900
C9—H9B0.9900C19—H19B0.9900
C10—H10A0.9800C20—H20A0.9800
C10—H10B0.9800C20—H20B0.9800
C10—H10C0.9800C20—H20C0.9800
C8—O2—C9115.4 (5)C18—O4—C19116.6 (5)
C7—N1—N2116.5 (5)C17—N3—N4116.1 (5)
C8—N2—N1120.8 (5)N3—N4—C18120.3 (5)
C8—N2—H2A119.9N3—N4—H4A120.0
N1—N2—H2A119.2C18—N4—H4A119.7
C2—C1—C6122.4 (7)C12—C11—C14120.7 (7)
C2—C1—H1118.8C12—C11—H11119.6
C6—C1—H1118.8C14—C11—H11119.6
C1—C2—C3118.2 (7)C11—C12—C13120.9 (8)
C1—C2—H2120.9C11—C12—Br2120.4 (7)
C3—C2—H2120.9C13—C12—Br2118.6 (7)
C4—C3—C2121.3 (8)C15—C13—C12118.2 (7)
C4—C3—Br1119.4 (6)C15—C13—H13120.9
C2—C3—Br1119.4 (6)C12—C13—H13120.9
C5—C4—C3118.6 (7)C11—C14—C16120.0 (7)
C5—C4—H4120.7C11—C14—H14120.0
C3—C4—H4120.7C16—C14—H14120.0
C4—C5—C6122.6 (7)C13—C15—C16121.9 (7)
C4—C5—H5118.7C13—C15—H15119.1
C6—C5—H5118.7C16—C15—H15119.1
C5—C6—C1116.8 (7)C15—C16—C14118.2 (7)
C5—C6—C7122.7 (7)C15—C16—C17120.3 (6)
C1—C6—C7120.5 (6)C14—C16—C17121.4 (7)
N1—C7—C6121.3 (6)N3—C17—C16120.9 (6)
N1—C7—H7119.3N3—C17—H17119.6
C6—C7—H7119.3C16—C17—H17119.6
O1—C8—O2124.6 (7)O3—C18—O4124.5 (7)
O1—C8—N2125.0 (7)O3—C18—N4125.6 (7)
O2—C8—N2110.4 (6)O4—C18—N4109.9 (6)
O2—C9—C10107.7 (7)O4—C19—C20107.3 (7)
O2—C9—H9A110.2O4—C19—H19A110.2
C10—C9—H9A110.2C20—C19—H19A110.2
O2—C9—H9B110.2O4—C19—H19B110.2
C10—C9—H9B110.2C20—C19—H19B110.2
H9A—C9—H9B108.5H19A—C19—H19B108.5
C9—C10—H10A109.5C19—C20—H20A109.5
C9—C10—H10B109.5C19—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C9—C10—H10C109.5C19—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C7—N1—N2—C8175.2 (7)C17—N3—N4—C18164.0 (7)
C6—C1—C2—C31.6 (11)C14—C11—C12—C132.6 (12)
C1—C2—C3—C41.0 (12)C14—C11—C12—Br2175.0 (6)
C1—C2—C3—Br1178.2 (6)C11—C12—C13—C150.7 (12)
C2—C3—C4—C51.0 (12)Br2—C12—C13—C15176.9 (6)
Br1—C3—C4—C5178.2 (6)C12—C11—C14—C161.5 (11)
C3—C4—C5—C61.6 (13)C12—C13—C15—C162.2 (11)
C4—C5—C6—C14.0 (12)C13—C15—C16—C143.3 (11)
C4—C5—C6—C7178.6 (7)C13—C15—C16—C17176.2 (7)
C2—C1—C6—C54.0 (11)C11—C14—C16—C151.4 (10)
C2—C1—C6—C7178.5 (7)C11—C14—C16—C17178.1 (7)
N2—N1—C7—C6178.9 (6)N4—N3—C17—C16179.5 (6)
C5—C6—C7—N13.2 (11)C15—C16—C17—N3153.1 (7)
C1—C6—C7—N1179.5 (7)C14—C16—C17—N326.4 (10)
C9—O2—C8—O13.9 (10)C19—O4—C18—O35.5 (11)
C9—O2—C8—N2177.8 (6)C19—O4—C18—N4175.8 (7)
N1—N2—C8—O11.6 (11)N3—N4—C18—O30.6 (11)
N1—N2—C8—O2179.9 (6)N3—N4—C18—O4179.3 (6)
C8—O2—C9—C10180.0 (8)C18—O4—C19—C20168.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.092.913 (7)161
N4—H4A···O1i0.862.092.875 (7)152
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11BrN2O2
Mr271.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)16.499 (3), 8.6052 (19), 18.277 (4)
β (°) 116.279 (7)
V3)2326.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.419, 0.474
No. of measured, independent and
observed [I > 2σ(I)] reflections
24092, 4075, 1989
Rint0.139
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.259, 0.88
No. of reflections4075
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 1.10

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.092.913 (7)161
N4—H4A···O1i0.862.092.875 (7)152
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The author acknowledges the financial support of Zhejiang Institute of Communications, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds