metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­iodidomercury(II)]-μ-nicotine-κ2N:N′]

aKey Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and bDepartment of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: lulude17@yahoo.com.cn

(Received 28 June 2008; accepted 7 July 2008; online 12 July 2008)

The title polymeric complex, [HgI2(C10H14N2)]n, was prepared from a solution of nicotine, mercury(II) iodide and 4-cyano­pyridine in dimethyl­formamide. Each nicotine mol­ecule is bonded to two Hg atoms, one through the pyrrolidine N atom and the other through the pyridine N atom, forming infinite zigzag polymeric chains. The coordin­ation around mercury is completed by two iodide ligands, resulting in a distorted tetra­hedral arrangement.

Related literature

For related literature, see: Udupa & Krebs, (1980[Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161-164.]); Meyer et al., (2006[Meyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34-35.]); Haendler, (1990[Haendler, H. M. (1990). Acta Cryst. C46, 2054-2057.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C10H14N2)]

  • Mr = 616.62

  • Orthorhombic, P 21 21 21

  • a = 7.7171 (2) Å

  • b = 11.1548 (3) Å

  • c = 15.9646 (4) Å

  • V = 1374.28 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.67 mm−1

  • T = 123 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.062, Tmax = 0.15

  • 6248 measured reflections

  • 2344 independent reflections

  • 2274 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.049

  • S = 0.92

  • 2344 reflections

  • 137 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −1.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 852 Friedel pairs

  • Flack parameter: 0.033 (5)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Numerous complexes of nicotine [3-(1-methyl-2-pyrrolidinyl)pyridine] have been reported to form molecular complexes and polycomplexes with metals (Udupa & Krebs, 1980; Meyer et al., 2006; Haendler, 1990). However, the crystal structure of the polycomplex, di-iodido(nicotine)mercury(II), has not been reported so far. In order to further explore the structural chemistry of nicotine complexes, we synthesized and determined the structure of the title compound (I).

As illustrated in Fig. 1, each nicotine molecule in (I) is coordinated to two adjacent mercury atoms, one through the pyrrolidine nitrogen (Hg—N 2.428 (7) Å) and the other through the pyridine nitrogen (Hg—N 2.454 (5) Å), forming zigzag polymeric chains. The coordination around mercury is completed by two iodide ligands (Hg—I 2.6819 (6) and 2.6536 (5) Å), resulting in a distorted tetrahedral arrangement. In addition, the absolute configurations of C6 and N2 can be given as S (S-nicotine was used as a starting material). No notable interactions were found between polymeric chains.

Examples of closely related compounds containing nicotine ligands include a mercury(II) chain polymer (Udupa & Krebs, 1980), a helical silver(I) coordination polymer (Meyer et al., 2006) and a chloride-nicotine copper(II) complex (Haendler, 1990).

Related literature top

For related literature, see: Udupa & Krebs, (1980); Meyer et al., (2006); Haendler, (1990).

Experimental top

HgI2 (454 mg,1 mmol) was added to a solution of 4-cyanopyridine (104 mg,1 mmol) in dmf (5 ml). The resulting mixture was stirred for about 10 min after which an white precipitate formed. S-Nicotine (3 ml) was then added dropwise to the reaction mixture and stirring was continued, during which time the precipitate changed its colour, giving a flesh colored precipitate. The precipitate was washed with ethanol and vacuum dried. Yield: 0.435 g, 70% (based on HgI2used). The compound (100 mg) was dissolved in dmf (5 ml), the resulting solution filtered and the light-yellow filtrate transfered into a test tube and i-PrOH (10 ml) was carefully laid on the surface of the filtrate. Light-yellow block crystals were obtained after 15 days. Analysis: Found: C 34.52, H 3.90, N 7.90%; Calculated for C10H14HgI2N2: C 34.35, H 4.04, N 8.01%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. All H atoms have been omitted. Symmetry transformations: A is -x+1/2, -y, z+1/2.
catena-Poly[[diiodidomercury(II)]-µ-3-(1-methyl-2-pyrrolidinyl)pyridine- κ2N:N'] top
Crystal data top
[HgI2(C10H14N2)]F(000) = 1096
Mr = 616.62Dx = 2.980 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2274 reflections
a = 7.7171 (2) Åθ = 2.1–26.4°
b = 11.1548 (3) ŵ = 15.67 mm1
c = 15.9646 (4) ÅT = 123 K
V = 1374.28 (6) Å3Block, light-yellow
Z = 40.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2344 independent reflections
Radiation source: fine-focus sealed tube2274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 96
Tmin = 0.062, Tmax = 0.15k = 1311
6248 measured reflectionsl = 1915
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.002
2344 reflectionsΔρmax = 0.89 e Å3
137 parametersΔρmin = 1.31 e Å3
6 restraintsAbsolute structure: Flack (1983), 852 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (5)
Crystal data top
[HgI2(C10H14N2)]V = 1374.28 (6) Å3
Mr = 616.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7171 (2) ŵ = 15.67 mm1
b = 11.1548 (3) ÅT = 123 K
c = 15.9646 (4) Å0.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2274 reflections with I > 2σ(I)
Tmin = 0.062, Tmax = 0.15Rint = 0.030
6248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.89 e Å3
S = 0.92Δρmin = 1.31 e Å3
2344 reflectionsAbsolute structure: Flack (1983), 852 Friedel pairs
137 parametersAbsolute structure parameter: 0.033 (5)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7832 (10)0.7760 (5)0.7209 (4)0.0132 (17)
H10.81930.78990.77700.016*
C20.6807 (9)0.6765 (5)0.7059 (5)0.0103 (16)
C30.6386 (10)0.6555 (6)0.6213 (5)0.0140 (17)
H30.57180.58740.60600.017*
C40.6952 (10)0.7348 (6)0.5605 (5)0.0179 (18)
H40.66610.72190.50340.022*
C50.7939 (10)0.8325 (6)0.5829 (5)0.0136 (17)
H50.83330.88580.54060.016*
C60.6217 (10)0.5906 (6)0.7722 (4)0.0119 (17)
H60.50720.55720.75430.014*
C70.6751 (11)0.4290 (6)0.8612 (5)0.0188 (19)
H7A0.76620.37990.88820.023*
H7B0.57560.37660.84740.023*
C80.6183 (11)0.5305 (6)0.9193 (4)0.0185 (19)
H8A0.70630.54530.96330.022*
H8B0.50630.51150.94650.022*
C90.6006 (10)0.6397 (6)0.8611 (4)0.0140 (17)
H9A0.48570.67780.86810.017*
H9B0.69150.69980.87350.017*
C100.7411 (11)0.4025 (6)0.7151 (5)0.023 (2)
H10A0.79710.32770.73240.034*
H10B0.80380.43680.66740.034*
H10C0.62100.38610.69880.034*
Hg10.95797 (4)1.05075 (2)0.698176 (18)0.01298 (8)
I10.84450 (6)1.06434 (4)0.85667 (3)0.01766 (13)
I20.91255 (7)1.16336 (4)0.55341 (3)0.02021 (14)
N10.8355 (8)0.8542 (4)0.6627 (4)0.0104 (14)
N20.7431 (9)0.4874 (4)0.7847 (3)0.0126 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (4)0.017 (3)0.007 (4)0.001 (3)0.002 (3)0.008 (3)
C20.010 (2)0.011 (2)0.010 (2)0.0016 (17)0.0016 (17)0.0009 (17)
C30.011 (4)0.016 (3)0.016 (5)0.001 (3)0.005 (3)0.001 (3)
C40.019 (5)0.022 (4)0.012 (5)0.005 (4)0.007 (4)0.000 (4)
C50.014 (4)0.022 (4)0.005 (4)0.007 (4)0.001 (3)0.002 (3)
C60.010 (4)0.014 (3)0.012 (4)0.001 (3)0.001 (3)0.002 (3)
C70.028 (5)0.018 (4)0.011 (4)0.001 (4)0.008 (4)0.003 (3)
C80.024 (5)0.021 (4)0.011 (4)0.003 (4)0.006 (4)0.001 (3)
C90.020 (4)0.016 (3)0.007 (4)0.004 (3)0.005 (3)0.001 (3)
C100.023 (5)0.017 (4)0.029 (6)0.001 (4)0.002 (4)0.006 (4)
Hg10.01563 (16)0.01506 (14)0.00825 (16)0.00253 (13)0.00074 (12)0.00158 (13)
I10.0168 (3)0.0258 (3)0.0105 (3)0.0004 (2)0.0026 (2)0.0031 (2)
I20.0254 (3)0.0222 (3)0.0131 (3)0.0003 (2)0.0033 (2)0.0079 (2)
N10.015 (3)0.010 (3)0.006 (3)0.003 (3)0.002 (3)0.002 (3)
N20.021 (4)0.007 (3)0.009 (4)0.005 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
C1—N11.336 (8)C7—H7A0.9900
C1—C21.384 (9)C7—H7B0.9900
C1—H10.9500C8—C91.538 (9)
C2—C31.409 (9)C8—H8A0.9900
C2—C61.499 (9)C8—H8B0.9900
C3—C41.384 (9)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.376 (9)C10—N21.460 (8)
C4—H40.9500C10—H10A0.9800
C5—N11.336 (9)C10—H10B0.9800
C5—H50.9500C10—H10C0.9800
C6—N21.498 (8)Hg1—N2i2.428 (7)
C6—C91.530 (9)Hg1—N12.454 (5)
C6—H61.0000Hg1—I22.6536 (5)
C7—N21.481 (9)Hg1—I12.6819 (6)
C7—C81.528 (9)N2—Hg1ii2.428 (7)
N1—C1—C2125.1 (7)C7—C8—H8B110.9
N1—C1—H1117.4C9—C8—H8B110.9
C2—C1—H1117.4H8A—C8—H8B108.9
C1—C2—C3115.5 (6)C6—C9—C8105.5 (5)
C1—C2—C6124.3 (7)C6—C9—H9A110.6
C3—C2—C6120.1 (6)C8—C9—H9A110.6
C4—C3—C2119.5 (6)C6—C9—H9B110.6
C4—C3—H3120.2C8—C9—H9B110.6
C2—C3—H3120.2H9A—C9—H9B108.8
C5—C4—C3119.9 (7)N2—C10—H10A109.5
C5—C4—H4120.0N2—C10—H10B109.5
C3—C4—H4120.0H10A—C10—H10B109.5
N1—C5—C4121.6 (7)N2—C10—H10C109.5
N1—C5—H5119.2H10A—C10—H10C109.5
C4—C5—H5119.2H10B—C10—H10C109.5
N2—C6—C2113.2 (6)N2i—Hg1—N197.59 (19)
N2—C6—C9102.6 (5)N2i—Hg1—I2111.18 (13)
C2—C6—C9117.3 (6)N1—Hg1—I299.85 (13)
N2—C6—H6107.7N2i—Hg1—I1102.73 (13)
C2—C6—H6107.7N1—Hg1—I198.19 (13)
C9—C6—H6107.7I2—Hg1—I1138.749 (19)
N2—C7—C8106.1 (5)C1—N1—C5118.2 (6)
N2—C7—H7A110.5C1—N1—Hg1122.6 (4)
C8—C7—H7A110.5C5—N1—Hg1118.3 (4)
N2—C7—H7B110.5C10—N2—C7109.8 (5)
C8—C7—H7B110.5C10—N2—C6113.0 (6)
H7A—C7—H7B108.7C7—N2—C6103.1 (5)
C7—C8—C9104.2 (6)C10—N2—Hg1ii106.5 (5)
C7—C8—H8A110.9C7—N2—Hg1ii111.8 (5)
C9—C8—H8A110.9C6—N2—Hg1ii112.7 (4)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[HgI2(C10H14N2)]
Mr616.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.7171 (2), 11.1548 (3), 15.9646 (4)
V3)1374.28 (6)
Z4
Radiation typeMo Kα
µ (mm1)15.67
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.062, 0.15
No. of measured, independent and
observed [I > 2σ(I)] reflections
6248, 2344, 2274
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.049, 0.92
No. of reflections2344
No. of parameters137
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 1.31
Absolute structureFlack (1983), 852 Friedel pairs
Absolute structure parameter0.033 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 50572039) and the Natural Science Foundation of Jiangsu Province (BK2006199).

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaendler, H. M. (1990). Acta Cryst. C46, 2054–2057.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161–164.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds