organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Nitro­phen­yl)-2-(3-phenyl­allyl­­idene)hydrazine

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@yahoo.com.cn

(Received 3 July 2008; accepted 10 July 2008; online 19 July 2008)

In the title compound, C15H13N3O2, the nitro­benzene and benzene rings make a dihedral angle of 9.1 (2)°. The crystal structure is consolidated by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O2

  • Mr = 267.28

  • Monoclinic, P c

  • a = 6.1011 (3) Å

  • b = 12.4505 (6) Å

  • c = 9.0076 (4) Å

  • β = 93.273 (3)°

  • V = 683.12 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.982

  • 5992 measured reflections

  • 1502 independent reflections

  • 783 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 0.94

  • 1502 reflections

  • 185 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.89 (3) 2.20 (3) 3.082 (4) 169 (3)
Symmetry code: (i) [x-1, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Nitrophenylhydrazine has applications in organic synthesis and some of its derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As part of our interest in the study of the coordination chemistry, we report the synthesis and crystal structure of the title compound (I).

The 4-nitrophenyl group and the benzene ring are slightly twisted, making a dihedral angle of 9.1 (2)°. The dihedral angle between the N1/O1/O2 and its attached benzene ring is 7.4 (2)° (Fig. 1).

The molecules are linked by N—H···O hydrogen bonds to form a zigzag like chain (Fig. 2).

Related literature top

For related literature, see: Okabe et al. (1993).

Experimental top

4-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous methanol and H2SO4 (98% 0.5 ml) was added. The resultant solution was stirred for several minutes at 351 K. Cinnamaldehyde (1 mmol 0.132 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in dichloromethane. Brown single crystals of (I) were obtained after 6 d.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93Å (aromatic) with Uiso(H) = 1.2Ueq(C). H2A was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.89 (3)Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. the ORTEP plot of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing of (I), showing the intermolecular hydrogen bonds as dashed lines.
1-(4-Nitrophenyl)-2-(3-phenylallylidene)hydrazine top
Crystal data top
C15H13N3O2F(000) = 280
Mr = 267.28Dx = 1.299 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1143 reflections
a = 6.1011 (3) Åθ = 2.1–25.6°
b = 12.4505 (6) ŵ = 0.09 mm1
c = 9.0076 (4) ÅT = 296 K
β = 93.273 (3)°Block, brown
V = 683.12 (6) Å30.23 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1502 independent reflections
Radiation source: sealed tube783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.980, Tmax = 0.982k = 1415
5992 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1502 reflectionsΔρmax = 0.09 e Å3
185 parametersΔρmin = 0.10 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (6)
Crystal data top
C15H13N3O2V = 683.12 (6) Å3
Mr = 267.28Z = 2
Monoclinic, PcMo Kα radiation
a = 6.1011 (3) ŵ = 0.09 mm1
b = 12.4505 (6) ÅT = 296 K
c = 9.0076 (4) Å0.23 × 0.20 × 0.20 mm
β = 93.273 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1502 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
783 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.982Rint = 0.045
5992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.09 e Å3
1502 reflectionsΔρmin = 0.10 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0954 (5)0.9273 (2)0.0961 (4)0.1019 (9)
O21.0374 (5)1.0780 (3)0.0100 (3)0.1053 (11)
N10.9922 (5)0.9832 (3)0.0132 (3)0.0768 (9)
N20.2734 (4)0.8124 (2)0.2572 (3)0.0689 (8)
N30.1907 (4)0.7139 (2)0.2171 (3)0.0718 (8)
C10.8094 (5)0.9377 (3)0.0590 (4)0.0595 (8)
C20.7374 (5)0.8364 (3)0.0209 (4)0.0663 (10)
H20.80960.79670.04880.080*
C30.5603 (5)0.7940 (3)0.0852 (4)0.0644 (9)
H30.51160.72550.05850.077*
C40.4516 (5)0.8519 (3)0.1903 (4)0.0593 (8)
C50.5270 (6)0.9545 (3)0.2290 (4)0.0689 (10)
H50.45670.99410.29980.083*
C60.7040 (5)0.9972 (3)0.1631 (4)0.0695 (9)
H60.75321.06590.18820.083*
C70.0126 (6)0.6853 (3)0.2753 (4)0.0717 (9)
H70.05110.73050.34290.086*
C80.0884 (6)0.5852 (3)0.2375 (4)0.0742 (10)
H80.01700.53930.17470.089*
C90.2781 (6)0.5539 (3)0.2868 (4)0.0757 (10)
H90.34430.60170.34970.091*
C100.3973 (6)0.4540 (3)0.2553 (4)0.0781 (11)
C110.3260 (8)0.3749 (4)0.1614 (5)0.0973 (13)
H110.19190.38270.11840.117*
C120.4506 (11)0.2854 (4)0.1313 (6)0.1188 (19)
H120.40120.23380.06640.143*
C130.6461 (12)0.2703 (5)0.1945 (7)0.128 (2)
H130.73000.20940.17240.153*
C140.7170 (8)0.3456 (5)0.2905 (7)0.1205 (19)
H140.84790.33460.33630.145*
C150.5968 (7)0.4385 (4)0.3210 (5)0.0968 (13)
H150.64880.49010.38490.116*
H2A0.205 (5)0.852 (2)0.323 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0786 (17)0.127 (2)0.1032 (19)0.0004 (17)0.0351 (16)0.0009 (18)
O20.104 (2)0.104 (2)0.109 (2)0.040 (2)0.0197 (18)0.0008 (18)
N10.068 (2)0.094 (3)0.0691 (19)0.012 (2)0.0059 (17)0.008 (2)
N20.0610 (19)0.070 (2)0.077 (2)0.0064 (16)0.0103 (16)0.0075 (15)
N30.0674 (19)0.0658 (19)0.082 (2)0.0096 (16)0.0027 (17)0.0023 (16)
C10.0512 (18)0.070 (2)0.0578 (19)0.0043 (18)0.0033 (16)0.0044 (17)
C20.069 (2)0.069 (2)0.062 (2)0.0083 (19)0.0106 (19)0.0015 (18)
C30.062 (2)0.055 (2)0.076 (2)0.0008 (18)0.0037 (19)0.0048 (19)
C40.0539 (19)0.064 (2)0.0598 (19)0.0012 (17)0.0007 (17)0.0004 (17)
C50.061 (2)0.072 (2)0.074 (2)0.0022 (18)0.0110 (19)0.0102 (19)
C60.067 (2)0.065 (2)0.076 (2)0.011 (2)0.0021 (19)0.0015 (19)
C70.062 (2)0.075 (2)0.077 (2)0.007 (2)0.0044 (19)0.0044 (19)
C80.074 (2)0.068 (2)0.080 (3)0.008 (2)0.000 (2)0.0086 (19)
C90.077 (3)0.074 (2)0.076 (2)0.016 (2)0.003 (2)0.0047 (19)
C100.073 (3)0.080 (3)0.079 (3)0.018 (2)0.014 (2)0.018 (2)
C110.123 (3)0.086 (3)0.082 (3)0.024 (3)0.002 (3)0.001 (2)
C120.169 (6)0.082 (3)0.102 (4)0.034 (4)0.022 (4)0.011 (3)
C130.157 (6)0.098 (4)0.122 (4)0.061 (4)0.042 (4)0.025 (4)
C140.096 (3)0.119 (4)0.144 (5)0.045 (4)0.022 (3)0.045 (4)
C150.077 (3)0.093 (3)0.119 (3)0.014 (3)0.009 (3)0.019 (2)
Geometric parameters (Å, º) top
O1—N11.221 (4)C7—C81.423 (5)
O2—N11.228 (4)C7—H70.9300
N1—C11.438 (4)C8—C91.322 (5)
N2—C41.365 (4)C8—H80.9300
N2—N31.366 (4)C9—C101.461 (5)
N2—H2A0.89 (3)C9—H90.9300
N3—C71.284 (4)C10—C111.384 (6)
C1—C21.373 (4)C10—C151.397 (5)
C1—C61.382 (4)C11—C121.368 (6)
C2—C31.361 (4)C11—H110.9300
C2—H20.9300C12—C131.364 (8)
C3—C41.388 (4)C12—H120.9300
C3—H30.9300C13—C141.362 (8)
C4—C51.396 (4)C13—H130.9300
C5—C61.369 (4)C14—C151.389 (7)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
O1—N1—O2122.2 (3)N3—C7—H7119.7
O1—N1—C1119.5 (4)C8—C7—H7119.7
O2—N1—C1118.3 (3)C9—C8—C7123.6 (4)
C4—N2—N3119.9 (3)C9—C8—H8118.2
C4—N2—H2A120 (2)C7—C8—H8118.2
N3—N2—H2A120 (2)C8—C9—C10128.4 (4)
C7—N3—N2116.7 (3)C8—C9—H9115.8
C2—C1—C6120.5 (3)C10—C9—H9115.8
C2—C1—N1119.6 (3)C11—C10—C15118.2 (4)
C6—C1—N1119.9 (3)C11—C10—C9123.7 (4)
C3—C2—C1120.1 (3)C15—C10—C9118.1 (4)
C3—C2—H2120.0C12—C11—C10120.7 (5)
C1—C2—H2120.0C12—C11—H11119.6
C2—C3—C4120.7 (3)C10—C11—H11119.6
C2—C3—H3119.7C13—C12—C11121.2 (5)
C4—C3—H3119.7C13—C12—H12119.4
N2—C4—C3122.5 (3)C11—C12—H12119.4
N2—C4—C5118.6 (3)C14—C13—C12119.2 (5)
C3—C4—C5118.8 (3)C14—C13—H13120.4
C6—C5—C4120.3 (3)C12—C13—H13120.4
C6—C5—H5119.9C13—C14—C15121.0 (6)
C4—C5—H5119.9C13—C14—H14119.5
C5—C6—C1119.7 (3)C15—C14—H14119.5
C5—C6—H6120.2C14—C15—C10119.6 (5)
C1—C6—H6120.2C14—C15—H15120.2
N3—C7—C8120.7 (4)C10—C15—H15120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.89 (3)2.20 (3)3.082 (4)169 (3)
Symmetry code: (i) x1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O2
Mr267.28
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)6.1011 (3), 12.4505 (6), 9.0076 (4)
β (°) 93.273 (3)
V3)683.12 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5992, 1502, 783
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 0.95
No. of reflections1502
No. of parameters185
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.09, 0.10

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.89 (3)2.20 (3)3.082 (4)169 (3)
Symmetry code: (i) x1, y+2, z+1/2.
 

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds