metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-bromo-4-chloro-6-[2-(phenyl­sulfon­yl)hydrazonometh­yl]phenolato-κ2N,O1}copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2008; accepted 15 July 2008; online 19 July 2008)

The Cu atom in the title compound, [Cu(C13H9BrClN2O3S)2], is chelated by two deprotonated Schiff base ligands in a square-planar coordination geometry; the Cu atom lies on a center of inversion. The –NH– group of one anion forms an intra­molecular hydrogen bond to the phenolate atom of the symmetry-related ion.

Related literature

For the structure of the copper derivative of a similar Schiff base ligand, see: Ali et al. (2007[Ali, H. M., Yusnita, J., Rizal, M. R. & Ng, S. W. (2007). Acta Cryst. E63, m2937.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H9BrClN2O3S)2]

  • Mr = 840.82

  • Triclinic, [P \overline 1]

  • a = 8.0688 (1) Å

  • b = 8.2755 (1) Å

  • c = 11.7386 (2) Å

  • α = 95.955 (1)°

  • β = 90.133 (1)°

  • γ = 115.159 (1)°

  • V = 704.70 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 100 (2) K

  • 0.20 × 0.09 × 0.09 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.502, Tmax = 0.715

  • 8995 measured reflections

  • 3214 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.061

  • S = 1.05

  • 3214 reflections

  • 200 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.905 (1)
Cu1—N1 1.963 (2)
O1—Cu1—N1 91.28 (6)
O1—Cu1—N1i 88.72 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 (1) 2.07 (2) 2.722 (2) 130 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The present study continues with a study on the copper derivative of Schiff-base condensation products from the reaction between substituted salicylaldehydes and benzene sulfonylhydrazine. The two monoanions chelate to the copper atom, which shows square-planar coordination (Ali et al., 2007). The present copper derivative (Scheme I, Fig. 1), which has a bromine substituent in the aromatic system, shows such a geometry; the nature of the substituent in the salicylaldehyde portion does not have an effect on the overall geometry.

Related literature top

For the structure of the copper derivative of a similar Schiff base ligand, see: Ali et al. (2007).

Experimental top

3-Bromo-5-chlorobenzaldehyde (0.5 g, 0.3 mmol) and benzenesulfonylhydrazine (0.5 g, 0.3 mmol) were condensed in refluxing ethanol (100 ml) for two hours. The solvent was removed to give the Schiff base, which was collected and dried. The ligand (0.6 g, 2 mmol) and copper acetate (0.2 g, 1 mmol) were heated in ethanol (100 ml) for two hours. The solvent was removed and the product recrystallized from DMSO.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino H atom was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of Cu(C13H9BrClN2O3S)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are denoted by dashed lines. The copper atom lies on a center of inversion, and unlabeled atoms are related to their labeled equivalents by 1 – x, 1 – y, 1 – z.
Bis{2-bromo-4-chloro-6-[2-(phenylsulfonyl)hydrazonomethyl]phenolato- κ2N,O1}copper(II) top
Crystal data top
[Cu(C13H9BrClN2O3S)2]Z = 1
Mr = 840.82F(000) = 415
Triclinic, P1Dx = 1.981 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0688 (1) ÅCell parameters from 5423 reflections
b = 8.2755 (1) Åθ = 2.7–28.4°
c = 11.7386 (2) ŵ = 4.00 mm1
α = 95.955 (1)°T = 100 K
β = 90.133 (1)°Block, purple
γ = 115.159 (1)°0.20 × 0.09 × 0.09 mm
V = 704.70 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
3214 independent reflections
Radiation source: fine-focus sealed tube2928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.502, Tmax = 0.715k = 1010
8995 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.5714P]
where P = (Fo2 + 2Fc2)/3
3214 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[Cu(C13H9BrClN2O3S)2]γ = 115.159 (1)°
Mr = 840.82V = 704.70 (2) Å3
Triclinic, P1Z = 1
a = 8.0688 (1) ÅMo Kα radiation
b = 8.2755 (1) ŵ = 4.00 mm1
c = 11.7386 (2) ÅT = 100 K
α = 95.955 (1)°0.20 × 0.09 × 0.09 mm
β = 90.133 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2928 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.715Rint = 0.017
8995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.52 e Å3
3214 reflectionsΔρmin = 0.29 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46994 (3)0.68016 (3)0.125566 (17)0.01926 (7)
Cu10.50000.50000.50000.01271 (9)
Cl10.18066 (7)0.07143 (7)0.02818 (4)0.02134 (12)
S10.09184 (7)0.33794 (7)0.69365 (4)0.01590 (11)
O10.4287 (2)0.53987 (19)0.35457 (12)0.0156 (3)
O20.0713 (2)0.2946 (2)0.62483 (13)0.0201 (3)
O30.0825 (2)0.2833 (2)0.80598 (13)0.0223 (3)
N10.2591 (2)0.2994 (2)0.51073 (14)0.0139 (3)
N20.2075 (2)0.2348 (2)0.62019 (14)0.0149 (3)
H2N0.309 (2)0.267 (4)0.663 (2)0.025 (7)*
C10.2899 (3)0.4324 (3)0.28525 (17)0.0142 (4)
C20.2784 (3)0.4722 (3)0.17138 (17)0.0150 (4)
C30.1374 (3)0.3636 (3)0.09341 (17)0.0165 (4)
H30.13500.39380.01770.020*
C40.0018 (3)0.2085 (3)0.12702 (17)0.0161 (4)
C50.0002 (3)0.1631 (3)0.23553 (17)0.0162 (4)
H50.09580.05710.25700.019*
C60.1451 (3)0.2739 (3)0.31582 (16)0.0140 (4)
C70.1325 (3)0.2211 (3)0.42942 (17)0.0151 (4)
H70.02380.12190.44610.018*
C80.2345 (3)0.5685 (3)0.69679 (18)0.0168 (4)
C90.2357 (3)0.6526 (3)0.60000 (18)0.0175 (4)
H90.15000.59020.53720.021*
C100.3634 (3)0.8287 (3)0.5961 (2)0.0215 (4)
H100.36580.88770.53050.026*
C110.4881 (3)0.9189 (3)0.6887 (2)0.0254 (5)
H110.57701.03880.68560.030*
C120.4833 (3)0.8350 (3)0.7848 (2)0.0269 (5)
H120.56730.89870.84810.032*
C130.3572 (3)0.6584 (3)0.79044 (19)0.0216 (4)
H130.35470.60040.85660.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02148 (12)0.01787 (11)0.01395 (11)0.00366 (9)0.00187 (8)0.00401 (7)
Cu10.01245 (17)0.01403 (16)0.00878 (16)0.00304 (13)0.00122 (12)0.00080 (12)
Cl10.0154 (2)0.0276 (3)0.0122 (2)0.0018 (2)0.00463 (18)0.00208 (19)
S10.0156 (2)0.0193 (2)0.0112 (2)0.0056 (2)0.00112 (18)0.00311 (18)
O10.0151 (7)0.0171 (7)0.0111 (7)0.0035 (6)0.0023 (5)0.0018 (5)
O20.0148 (7)0.0249 (8)0.0179 (7)0.0054 (6)0.0001 (6)0.0047 (6)
O30.0253 (8)0.0291 (8)0.0123 (7)0.0107 (7)0.0031 (6)0.0054 (6)
N10.0167 (9)0.0141 (8)0.0095 (8)0.0052 (7)0.0006 (6)0.0018 (6)
N20.0160 (9)0.0166 (8)0.0106 (8)0.0051 (7)0.0009 (6)0.0029 (6)
C10.0146 (10)0.0162 (9)0.0121 (9)0.0074 (8)0.0016 (7)0.0007 (7)
C20.0161 (10)0.0148 (9)0.0134 (9)0.0061 (8)0.0005 (8)0.0012 (7)
C30.0181 (10)0.0214 (10)0.0111 (9)0.0096 (9)0.0002 (8)0.0014 (8)
C40.0132 (10)0.0196 (10)0.0129 (9)0.0060 (8)0.0037 (7)0.0043 (7)
C50.0145 (10)0.0171 (9)0.0149 (9)0.0055 (8)0.0002 (8)0.0014 (7)
C60.0147 (10)0.0158 (9)0.0112 (9)0.0064 (8)0.0006 (7)0.0003 (7)
C70.0155 (10)0.0140 (9)0.0139 (9)0.0048 (8)0.0003 (8)0.0005 (7)
C80.0162 (10)0.0177 (9)0.0158 (9)0.0074 (8)0.0002 (8)0.0015 (8)
C90.0160 (10)0.0184 (10)0.0165 (10)0.0062 (8)0.0006 (8)0.0001 (8)
C100.0200 (11)0.0198 (10)0.0242 (11)0.0079 (9)0.0035 (9)0.0027 (9)
C110.0190 (11)0.0190 (11)0.0330 (13)0.0053 (9)0.0000 (10)0.0058 (9)
C120.0247 (12)0.0260 (12)0.0257 (12)0.0101 (10)0.0090 (9)0.0118 (9)
C130.0249 (12)0.0246 (11)0.0169 (10)0.0137 (9)0.0039 (9)0.0047 (8)
Geometric parameters (Å, º) top
Br1—C21.890 (2)C3—H30.9500
Cu1—O11.905 (1)C4—C51.367 (3)
Cu1—O1i1.905 (1)C5—C61.415 (3)
Cu1—N1i1.963 (2)C5—H50.9500
Cu1—N11.963 (2)C6—C71.436 (3)
Cl1—C41.744 (2)C7—H70.9500
S1—O31.4297 (15)C8—C91.391 (3)
S1—O21.4309 (16)C8—C131.393 (3)
S1—N21.6945 (19)C9—C101.387 (3)
S1—C81.756 (2)C9—H90.9500
O1—C11.306 (2)C10—C111.393 (3)
N1—C71.296 (3)C10—H100.9500
N1—N21.437 (2)C11—C121.376 (4)
N2—H2N0.88 (1)C11—H110.9500
C1—C61.418 (3)C12—C131.390 (3)
C1—C21.421 (3)C12—H120.9500
C2—C31.377 (3)C13—H130.9500
C3—C41.395 (3)
O1—Cu1—O1i180.000 (1)C5—C4—Cl1119.90 (16)
O1—Cu1—N191.28 (6)C3—C4—Cl1119.02 (15)
O1—Cu1—N1i88.72 (6)C4—C5—C6120.01 (19)
O1i—Cu1—N1i91.28 (6)C4—C5—H5120.0
O1i—Cu1—N188.72 (6)C6—C5—H5120.0
N1i—Cu1—N1180.0C5—C6—C1120.83 (18)
O3—S1—O2120.99 (10)C5—C6—C7116.47 (18)
O3—S1—N2104.25 (9)C1—C6—C7122.65 (18)
O2—S1—N2105.94 (9)N1—C7—C6124.48 (19)
O3—S1—C8110.55 (10)N1—C7—H7117.8
O2—S1—C8109.09 (10)C6—C7—H7117.8
N2—S1—C8104.59 (10)C9—C8—C13121.3 (2)
C1—O1—Cu1128.38 (13)C9—C8—S1118.74 (16)
C7—N1—N2114.29 (17)C13—C8—S1119.62 (17)
C7—N1—Cu1126.86 (14)C10—C9—C8119.2 (2)
N2—N1—Cu1118.75 (12)C10—C9—H9120.4
N1—N2—S1112.10 (13)C8—C9—H9120.4
N1—N2—H2N107.8 (18)C9—C10—C11119.9 (2)
S1—N2—H2N103.9 (18)C9—C10—H10120.1
O1—C1—C6124.07 (18)C11—C10—H10120.1
O1—C1—C2119.77 (18)C12—C11—C10120.3 (2)
C6—C1—C2116.16 (18)C12—C11—H11119.9
C3—C2—C1122.80 (19)C10—C11—H11119.9
C3—C2—Br1119.33 (15)C11—C12—C13120.9 (2)
C1—C2—Br1117.84 (15)C11—C12—H12119.5
C2—C3—C4119.11 (18)C13—C12—H12119.5
C2—C3—H3120.4C12—C13—C8118.4 (2)
C4—C3—H3120.4C12—C13—H13120.8
C5—C4—C3121.08 (19)C8—C13—H13120.8
N1i—Cu1—O1—C1163.78 (17)C4—C5—C6—C7177.20 (19)
N1—Cu1—O1—C116.22 (17)O1—C1—C6—C5179.35 (19)
O1—Cu1—N1—C711.64 (18)C2—C1—C6—C50.6 (3)
O1i—Cu1—N1—C7168.36 (18)O1—C1—C6—C73.4 (3)
O1—Cu1—N1—N2164.50 (14)C2—C1—C6—C7176.57 (19)
O1i—Cu1—N1—N215.50 (14)N2—N1—C7—C6173.81 (18)
C7—N1—N2—S184.65 (18)Cu1—N1—C7—C62.5 (3)
Cu1—N1—N2—S191.96 (14)C5—C6—C7—N1174.74 (19)
O3—S1—N2—N1169.59 (13)C1—C6—C7—N17.9 (3)
O2—S1—N2—N161.73 (15)O3—S1—C8—C9169.03 (17)
C8—S1—N2—N153.47 (15)O2—S1—C8—C933.7 (2)
Cu1—O1—C1—C611.6 (3)N2—S1—C8—C979.30 (19)
Cu1—O1—C1—C2168.43 (14)O3—S1—C8—C1317.7 (2)
O1—C1—C2—C3179.09 (19)O2—S1—C8—C13153.05 (17)
C6—C1—C2—C30.9 (3)N2—S1—C8—C1393.98 (19)
O1—C1—C2—Br10.9 (3)C13—C8—C9—C100.9 (3)
C6—C1—C2—Br1179.07 (14)S1—C8—C9—C10172.22 (17)
C1—C2—C3—C40.7 (3)C8—C9—C10—C110.1 (3)
Br1—C2—C3—C4178.82 (15)C9—C10—C11—C121.1 (3)
C2—C3—C4—C50.2 (3)C10—C11—C12—C131.4 (4)
C2—C3—C4—Cl1179.83 (16)C11—C12—C13—C80.5 (4)
C3—C4—C5—C60.1 (3)C9—C8—C13—C120.6 (3)
Cl1—C4—C5—C6179.93 (15)S1—C8—C13—C12172.46 (18)
C4—C5—C6—C10.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.88 (1)2.07 (2)2.722 (2)130 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H9BrClN2O3S)2]
Mr840.82
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0688 (1), 8.2755 (1), 11.7386 (2)
α, β, γ (°)95.955 (1), 90.133 (1), 115.159 (1)
V3)704.70 (2)
Z1
Radiation typeMo Kα
µ (mm1)4.00
Crystal size (mm)0.20 × 0.09 × 0.09
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.502, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
8995, 3214, 2928
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.061, 1.05
No. of reflections3214
No. of parameters200
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.905 (1)Cu1—N11.963 (2)
O1—Cu1—N191.28 (6)O1—Cu1—N1i88.72 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.88 (1)2.07 (2)2.722 (2)130 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Science Fund (12-02-03-2031, 12-02-03-2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

References

First citationAli, H. M., Yusnita, J., Rizal, M. R. & Ng, S. W. (2007). Acta Cryst. E63, m2937.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds