organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-nitro­phen­yl) sulfone

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 24 June 2008; accepted 24 June 2008; online 5 July 2008)

The asymmetric unit of the title compound, C12H8N2O6S, an important diphenyl sulfone derivative, contains one half-mol­ecule; a mirror plane passes through the SO2 group. The dihedral angle between the two symmetry-related benzene rings is 40.10 (13)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a five-membered ring, which adopts an envelope conformation.

Related literature

For related literature, see: Ayyangar et al. (1981[Ayyangar, N. R., Lugade, A. G., Nikrad, P. V. & Sharma, V. K. (1981). Synthesis, pp. 640-643.]); Amer et al. (1989[Amer, A., El-Massry, A. M. & Pittman, C. U. (1989). Chem. Scr. 29, 351-352.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O6S

  • Mr = 308.27

  • Orthorhombic, P m n 21

  • a = 20.260 (4) Å

  • b = 5.9380 (12) Å

  • c = 5.3770 (11) Å

  • V = 646.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.920, Tmax = 0.972

  • 1304 measured reflections

  • 674 independent reflections

  • 624 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.00

  • 674 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with no Friedel pairs

  • Flack parameter: −0.11 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1 0.93 2.58 2.928 (4) 102

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is used for preparing 3,3'-diaminodiphenyl sulfone (Ayyangar et al., 1981). As part of our studies in this area, we report herein the synthesis and crystal structure of (I).

The asymmetric unit of (I) (Fig. 1) contains one half molecule. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the two symmetry related bezene rings is 139.90 (13)°. The intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a five-membered non-planar ring: (S/O1/C3/C4/H4A), in which it adopts envelope conformation, with O1 atom displaced by -0.494 (3) Å from the planes of the other ring atoms.

Related literature top

For related literature, see: Ayyangar et al. (1981); Amer et al. (1989). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared according to the literature method (Amer et al., 1989). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in dichloroethane (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with C-H= 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme [symmetry code: (') -x, y, z]. Hydrogen bonds are shown as dashed lines.
Bis(3-nitrophenyl) sulfone top
Crystal data top
C12H8N2O6SF(000) = 316
Mr = 308.27Dx = 1.583 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2Cell parameters from 25 reflections
a = 20.260 (4) Åθ = 10–13°
b = 5.9380 (12) ŵ = 0.28 mm1
c = 5.3770 (11) ÅT = 294 K
V = 646.9 (2) Å3Block, light yellow
Z = 20.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
624 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 2424
Absorption correction: ψ scan
(North et al., 1968)
k = 70
Tmin = 0.920, Tmax = 0.972l = 06
1304 measured reflections3 standard reflections every 120 min
674 independent reflections intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.06P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.086Δρmax = 0.25 e Å3
S = 1.00Δρmin = 0.22 e Å3
674 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
101 parametersExtinction coefficient: 0.069 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with no Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.11 (15)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C12H8N2O6SV = 646.9 (2) Å3
Mr = 308.27Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 20.260 (4) ŵ = 0.28 mm1
b = 5.9380 (12) ÅT = 294 K
c = 5.3770 (11) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
624 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.920, Tmax = 0.9723 standard reflections every 120 min
1304 measured reflections intensity decay: none
674 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.25 e Å3
S = 1.00Δρmin = 0.22 e Å3
674 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
101 parametersAbsolute structure parameter: 0.11 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.50000.08254 (19)0.9607 (2)0.0438 (4)
N0.68253 (13)0.0542 (4)0.2895 (5)0.0422 (6)
O10.50000.1563 (5)0.9183 (9)0.0626 (12)
O20.50000.1705 (7)1.2095 (7)0.0663 (11)
O30.66204 (14)0.1343 (4)0.2403 (5)0.0660 (8)
O40.72681 (13)0.1460 (4)0.1767 (5)0.0599 (7)
C10.64732 (14)0.4956 (5)0.7589 (8)0.0451 (8)
H1B0.66380.63510.80720.054*
C20.59364 (14)0.4066 (5)0.8822 (7)0.0410 (7)
H2B0.57410.48421.01310.049*
C30.56929 (13)0.1978 (5)0.8063 (5)0.0347 (7)
C40.59799 (14)0.0791 (4)0.6139 (6)0.0341 (6)
H4A0.58160.06030.56480.041*
C50.65163 (13)0.1743 (5)0.4973 (6)0.0356 (6)
C60.67683 (14)0.3828 (4)0.5672 (7)0.0410 (7)
H6A0.71300.44420.48520.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0316 (5)0.0543 (6)0.0455 (7)0.0000.0000.0169 (6)
N0.0448 (13)0.0450 (14)0.0367 (14)0.0071 (11)0.0003 (12)0.0003 (11)
O10.0408 (17)0.0472 (16)0.100 (3)0.0000.0000.032 (2)
O20.049 (2)0.114 (3)0.0364 (18)0.0000.0000.016 (2)
O30.0784 (19)0.0580 (15)0.0615 (18)0.0025 (12)0.0081 (16)0.0211 (14)
O40.0545 (14)0.0738 (16)0.0512 (15)0.0009 (12)0.0190 (12)0.0005 (14)
C10.0374 (14)0.0341 (14)0.064 (2)0.0016 (12)0.0022 (16)0.0079 (16)
C20.0370 (15)0.0400 (15)0.0460 (17)0.0078 (12)0.0021 (14)0.0055 (14)
C30.0274 (12)0.0381 (14)0.0386 (16)0.0013 (11)0.0031 (12)0.0081 (13)
C40.0341 (13)0.0323 (12)0.0359 (16)0.0004 (11)0.0049 (13)0.0041 (14)
C50.0326 (13)0.0370 (13)0.0373 (14)0.0067 (10)0.0038 (13)0.0026 (13)
C60.0353 (14)0.0364 (14)0.0511 (19)0.0024 (12)0.0046 (15)0.0033 (14)
Geometric parameters (Å, º) top
S—O21.436 (4)C1—H1B0.9300
S—O11.437 (3)C2—C31.395 (4)
S—C31.769 (3)C2—H2B0.9300
S—C3i1.769 (3)C3—C41.380 (4)
N—O41.212 (4)C4—C51.376 (4)
N—O31.223 (3)C4—H4A0.9300
N—C51.466 (4)C5—C61.391 (4)
C1—C61.367 (5)C6—H6A0.9300
C1—C21.379 (4)
O2—S—O1120.5 (3)C3—C2—H2B120.7
O2—S—C3107.24 (14)C4—C3—C2121.6 (3)
O1—S—C3107.92 (15)C4—C3—S119.2 (2)
O2—S—C3i107.24 (14)C2—C3—S119.2 (3)
O1—S—C3i107.92 (15)C5—C4—C3117.7 (3)
C3—S—C3i105.06 (18)C5—C4—H4A121.2
O4—N—O3123.7 (3)C3—C4—H4A121.2
O4—N—C5118.6 (3)C4—C5—C6122.2 (3)
O3—N—C5117.7 (3)C4—C5—N119.0 (3)
C6—C1—C2121.3 (3)C6—C5—N118.8 (3)
C6—C1—H1B119.3C1—C6—C5118.6 (3)
C2—C1—H1B119.3C1—C6—H6A120.7
C1—C2—C3118.6 (3)C5—C6—H6A120.7
C1—C2—H2B120.7
C6—C1—C2—C30.4 (5)S—C3—C4—C5179.7 (2)
C1—C2—C3—C40.6 (5)C3—C4—C5—C60.1 (4)
C1—C2—C3—S179.4 (2)C3—C4—C5—N179.0 (2)
O2—S—C3—C4152.5 (2)O4—N—C5—C4175.0 (3)
O1—S—C3—C421.3 (3)O3—N—C5—C45.2 (4)
C3i—S—C3—C493.6 (2)O4—N—C5—C63.9 (4)
O2—S—C3—C227.5 (3)O3—N—C5—C6175.9 (3)
O1—S—C3—C2158.6 (3)C2—C1—C6—C50.0 (5)
C3i—S—C3—C286.4 (3)C4—C5—C6—C10.3 (5)
C2—C3—C4—C50.3 (4)N—C5—C6—C1179.2 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.582.928 (4)102

Experimental details

Crystal data
Chemical formulaC12H8N2O6S
Mr308.27
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)294
a, b, c (Å)20.260 (4), 5.9380 (12), 5.3770 (11)
V3)646.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.920, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
1304, 674, 624
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.00
No. of reflections674
No. of parameters101
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0.11 (15)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.932.582.928 (4)102.00
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmer, A., El-Massry, A. M. & Pittman, C. U. (1989). Chem. Scr. 29, 351–352.  CAS Google Scholar
First citationAyyangar, N. R., Lugade, A. G., Nikrad, P. V. & Sharma, V. K. (1981). Synthesis, pp. 640–643.  CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds