organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 June 2008; accepted 25 June 2008; online 5 July 2008)

The crystal structure of the title compound 3CP4MBA, C14H11ClO2, resembles those of 3-methyl­phenyl 4-methyl­benzoate (3MP4MBA), 4-methyl­phenyl 4-methyl­benzoate (4MP4MBA), 4-methyl­phenyl 4-chloro­benzoate (4CP4MBA) and other aryl benzoates with similar bond parameters. The dihedral angle between the benzene rings in 3CP4MBA is 71.75 (7)°, compared with 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, the mol­ecules are aligned with their long axis approximately along the [101] direction and stacked along the c axis.

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.], 2008[Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Monoclinic, P 21 /c

  • a = 13.706 (2) Å

  • b = 12.142 (2) Å

  • c = 7.3807 (5) Å

  • β = 100.625 (9)°

  • V = 1207.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.69 mm−1

  • T = 299 (2) K

  • 0.50 × 0.27 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.344, Tmax = 0.767

  • 4283 measured reflections

  • 2146 independent reflections

  • 1801 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.04

  • 2146 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2007, 2008), the structure of 3-chlorophenyl 4-methylbenzoate (3CP4MBA) has been determined. The structure of 3CP4MBA (Fig. 1) is similar to those of 3-methylphenyl 4-methyl- benzoate (3MP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) and other aryl benzoates (Gowda et al., 2007, 2008). The bond parameters in 3CP4MBA are similar to those in 3MP4MBA, 4MP4MBA, 4CP4MBA and other aryl benzoates. The dihedral angle between the benzene and phenyl rings in 3CP4MBA is 71.75 (7)°, compared to the values of 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, the molecules are elongated approximatelly along the [101] direction and stacked along the c axis (Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2007, 2008); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of its ethanolic solution.

Refinement top

H atoms (for CH) were located in difference map and refined [ C-H = 0.89 (2) -0.98 (2) Å; Uiso(H) = 0.067-0.079 Å2]. The methyl H atoms were positioned geometrically, with C-H= 0.96 Å, and constrained to ride on the parent atom, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
3-Chlorophenyl 4-methylbenzoate top
Crystal data top
C14H11ClO2F(000) = 512
Mr = 246.68Dx = 1.357 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.706 (2) Åθ = 4.9–22.0°
b = 12.142 (2) ŵ = 2.69 mm1
c = 7.3807 (5) ÅT = 299 K
β = 100.625 (9)°Plate, colorless
V = 1207.2 (3) Å30.50 × 0.27 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1801 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 67.0°, θmin = 3.3°
ω/2θ scansh = 1616
Absorption correction: ψ scan
(North et al., 1968)
k = 140
Tmin = 0.344, Tmax = 0.767l = 88
4283 measured reflections3 standard reflections every 120 min
2146 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2388P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.004
2146 reflectionsΔρmax = 0.19 e Å3
179 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0200 (13)
Crystal data top
C14H11ClO2V = 1207.2 (3) Å3
Mr = 246.68Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.706 (2) ŵ = 2.69 mm1
b = 12.142 (2) ÅT = 299 K
c = 7.3807 (5) Å0.50 × 0.27 × 0.10 mm
β = 100.625 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1801 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.344, Tmax = 0.7673 standard reflections every 120 min
4283 measured reflections intensity decay: 1.0%
2146 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
2146 reflectionsΔρmin = 0.28 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09746 (4)0.45783 (6)0.18459 (7)0.0902 (3)
O10.38017 (9)0.38035 (10)0.71453 (19)0.0659 (4)
O20.38682 (9)0.19643 (10)0.6950 (2)0.0690 (4)
C10.27767 (12)0.37826 (14)0.6477 (3)0.0550 (4)
C20.24434 (13)0.41200 (15)0.4698 (3)0.0557 (4)
H20.2874 (15)0.4294 (17)0.388 (3)0.067*
C30.14290 (13)0.41514 (15)0.4089 (2)0.0566 (4)
C40.07707 (14)0.38530 (16)0.5193 (3)0.0612 (5)
H40.0062 (16)0.3899 (17)0.472 (3)0.073*
C50.11328 (15)0.35196 (18)0.6970 (3)0.0655 (5)
H50.0675 (17)0.3304 (19)0.779 (3)0.079*
C60.21440 (15)0.34873 (16)0.7635 (3)0.0627 (5)
H60.2394 (16)0.3273 (18)0.878 (3)0.075*
C70.42774 (12)0.28135 (14)0.7426 (2)0.0518 (4)
C80.53187 (12)0.29444 (13)0.8356 (2)0.0492 (4)
C90.58762 (14)0.20077 (15)0.8849 (3)0.0581 (5)
H90.5605 (15)0.1327 (19)0.856 (3)0.070*
C100.68465 (14)0.20926 (17)0.9760 (3)0.0631 (5)
H100.7217 (16)0.1486 (19)1.014 (3)0.076*
C110.72884 (13)0.31058 (17)1.0174 (3)0.0602 (5)
C120.67287 (14)0.40421 (17)0.9643 (3)0.0614 (5)
H120.7006 (16)0.4749 (19)0.989 (3)0.074*
C130.57564 (13)0.39698 (15)0.8758 (3)0.0561 (4)
H130.5378 (15)0.4611 (17)0.839 (3)0.067*
C140.83424 (15)0.3191 (2)1.1193 (3)0.0819 (7)
H14A0.87820.32451.03220.098*
H14B0.85060.25491.19440.098*
H14C0.84120.38351.19610.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0729 (4)0.1236 (6)0.0670 (4)0.0106 (3)0.0054 (2)0.0248 (3)
O10.0505 (7)0.0512 (7)0.0862 (9)0.0002 (5)0.0126 (6)0.0011 (6)
O20.0537 (7)0.0552 (8)0.0950 (10)0.0058 (6)0.0059 (7)0.0148 (7)
C10.0483 (9)0.0433 (9)0.0673 (10)0.0012 (7)0.0055 (8)0.0030 (8)
C20.0517 (9)0.0516 (9)0.0619 (10)0.0013 (8)0.0050 (8)0.0000 (8)
C30.0541 (9)0.0547 (10)0.0566 (10)0.0075 (8)0.0011 (8)0.0029 (8)
C40.0496 (9)0.0574 (11)0.0735 (12)0.0050 (8)0.0031 (9)0.0024 (9)
C50.0618 (11)0.0634 (11)0.0720 (12)0.0015 (9)0.0139 (9)0.0075 (10)
C60.0679 (11)0.0571 (11)0.0583 (10)0.0017 (9)0.0006 (9)0.0054 (9)
C70.0502 (9)0.0519 (9)0.0525 (9)0.0013 (8)0.0071 (7)0.0023 (7)
C80.0482 (9)0.0513 (9)0.0477 (8)0.0003 (7)0.0074 (7)0.0004 (7)
C90.0559 (10)0.0495 (10)0.0688 (11)0.0001 (8)0.0111 (8)0.0004 (9)
C100.0533 (10)0.0620 (11)0.0733 (12)0.0108 (9)0.0096 (9)0.0114 (9)
C110.0487 (9)0.0764 (12)0.0543 (10)0.0012 (8)0.0062 (7)0.0041 (8)
C120.0553 (10)0.0593 (11)0.0659 (11)0.0069 (9)0.0016 (8)0.0070 (9)
C130.0530 (9)0.0496 (10)0.0622 (10)0.0020 (8)0.0016 (8)0.0026 (8)
C140.0545 (11)0.1051 (18)0.0804 (14)0.0022 (11)0.0028 (10)0.0104 (13)
Geometric parameters (Å, º) top
C1—C21.371 (3)C8—C91.381 (2)
C1—C61.373 (3)C8—C131.390 (2)
C1—O11.401 (2)C9—C101.379 (3)
C2—C31.381 (2)C9—H90.91 (2)
C2—H20.94 (2)C10—C111.380 (3)
C3—C41.371 (3)C10—H100.91 (2)
C3—Cl11.7372 (18)C11—C121.387 (3)
C4—C51.375 (3)C11—C141.504 (3)
C4—H40.97 (2)C12—C131.374 (3)
C5—C61.383 (3)C12—H120.94 (2)
C5—H50.98 (2)C13—H130.95 (2)
C6—H60.89 (2)C14—H14A0.9600
C7—O21.195 (2)C14—H14B0.9600
C7—O11.365 (2)C14—H14C0.9600
C7—C81.474 (2)
C2—C1—C6122.49 (17)C13—C8—C7122.60 (15)
C2—C1—O1117.87 (17)C10—C9—C8120.27 (17)
C6—C1—O1119.54 (17)C10—C9—H9119.7 (13)
C1—C2—C3117.26 (18)C8—C9—H9120.1 (13)
C1—C2—H2122.8 (13)C9—C10—C11121.26 (18)
C3—C2—H2119.9 (13)C9—C10—H10121.6 (14)
C4—C3—C2122.20 (17)C11—C10—H10117.1 (14)
C4—C3—Cl1119.04 (14)C10—C11—C12118.08 (17)
C2—C3—Cl1118.76 (15)C10—C11—C14120.93 (18)
C3—C4—C5118.89 (17)C12—C11—C14120.98 (19)
C3—C4—H4119.9 (12)C13—C12—C11121.28 (18)
C5—C4—H4121.2 (13)C13—C12—H12118.1 (13)
C4—C5—C6120.6 (2)C11—C12—H12120.6 (14)
C4—C5—H5120.3 (13)C12—C13—C8120.07 (17)
C6—C5—H5119.1 (13)C12—C13—H13121.0 (13)
C1—C6—C5118.57 (18)C8—C13—H13118.9 (13)
C1—C6—H6119.4 (14)C11—C14—H14A109.5
C5—C6—H6122.0 (14)C11—C14—H14B109.5
O2—C7—O1122.00 (15)H14A—C14—H14B109.5
O2—C7—C8126.27 (16)C11—C14—H14C109.5
O1—C7—C8111.73 (14)H14A—C14—H14C109.5
C9—C8—C13119.03 (16)H14B—C14—H14C109.5
C9—C8—C7118.37 (15)C7—O1—C1117.23 (13)
C6—C1—C2—C30.2 (3)C13—C8—C9—C101.3 (3)
O1—C1—C2—C3176.61 (15)C7—C8—C9—C10178.50 (17)
C1—C2—C3—C40.5 (3)C8—C9—C10—C111.0 (3)
C1—C2—C3—Cl1179.81 (14)C9—C10—C11—C120.2 (3)
C2—C3—C4—C50.5 (3)C9—C10—C11—C14179.1 (2)
Cl1—C3—C4—C5179.75 (15)C10—C11—C12—C131.1 (3)
C3—C4—C5—C60.1 (3)C14—C11—C12—C13178.1 (2)
C2—C1—C6—C50.8 (3)C11—C12—C13—C80.8 (3)
O1—C1—C6—C5177.16 (17)C9—C8—C13—C120.4 (3)
C4—C5—C6—C10.8 (3)C7—C8—C13—C12179.41 (17)
O2—C7—C8—C94.5 (3)O2—C7—O1—C17.6 (3)
O1—C7—C8—C9175.56 (16)C8—C7—O1—C1172.44 (15)
O2—C7—C8—C13175.72 (19)C2—C1—O1—C7109.35 (18)
O1—C7—C8—C134.2 (2)C6—C1—O1—C774.1 (2)

Experimental details

Crystal data
Chemical formulaC14H11ClO2
Mr246.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)13.706 (2), 12.142 (2), 7.3807 (5)
β (°) 100.625 (9)
V3)1207.2 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.69
Crystal size (mm)0.50 × 0.27 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.344, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
4283, 2146, 1801
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.04
No. of reflections2146
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds