organic compounds
3-Chlorophenyl 4-methylbenzoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The 14H11ClO2, resembles those of 3-methylphenyl 4-methylbenzoate (3MP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA), 4-methylphenyl 4-chlorobenzoate (4CP4MBA) and other aryl benzoates with similar bond parameters. The dihedral angle between the benzene rings in 3CP4MBA is 71.75 (7)°, compared with 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the the molecules are aligned with their long axis approximately along the [101] direction and stacked along the c axis.
of the title compound 3CP4MBA, CExperimental
Crystal data
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808019351/hk2479sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808019351/hk2479Isup2.hkl
The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of its ethanolic solution.
H atoms (for CH) were located in difference map and refined [ C-H = 0.89 (2) -0.98 (2) Å; Uiso(H) = 0.067-0.079 Å2]. The methyl H atoms were positioned geometrically, with C-H= 0.96 Å, and constrained to ride on the parent atom, with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H11ClO2 | F(000) = 512 |
Mr = 246.68 | Dx = 1.357 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.706 (2) Å | θ = 4.9–22.0° |
b = 12.142 (2) Å | µ = 2.69 mm−1 |
c = 7.3807 (5) Å | T = 299 K |
β = 100.625 (9)° | Plate, colorless |
V = 1207.2 (3) Å3 | 0.50 × 0.27 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1801 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 67.0°, θmin = 3.3° |
ω/2θ scans | h = −16→16 |
Absorption correction: ψ scan (North et al., 1968) | k = −14→0 |
Tmin = 0.344, Tmax = 0.767 | l = −8→8 |
4283 measured reflections | 3 standard reflections every 120 min |
2146 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2388P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.004 |
2146 reflections | Δρmax = 0.19 e Å−3 |
179 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0200 (13) |
C14H11ClO2 | V = 1207.2 (3) Å3 |
Mr = 246.68 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.706 (2) Å | µ = 2.69 mm−1 |
b = 12.142 (2) Å | T = 299 K |
c = 7.3807 (5) Å | 0.50 × 0.27 × 0.10 mm |
β = 100.625 (9)° |
Enraf–Nonius CAD-4 diffractometer | 1801 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.033 |
Tmin = 0.344, Tmax = 0.767 | 3 standard reflections every 120 min |
4283 measured reflections | intensity decay: 1.0% |
2146 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.19 e Å−3 |
2146 reflections | Δρmin = −0.28 e Å−3 |
179 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.09746 (4) | 0.45783 (6) | 0.18459 (7) | 0.0902 (3) | |
O1 | 0.38017 (9) | 0.38035 (10) | 0.71453 (19) | 0.0659 (4) | |
O2 | 0.38682 (9) | 0.19643 (10) | 0.6950 (2) | 0.0690 (4) | |
C1 | 0.27767 (12) | 0.37826 (14) | 0.6477 (3) | 0.0550 (4) | |
C2 | 0.24434 (13) | 0.41200 (15) | 0.4698 (3) | 0.0557 (4) | |
H2 | 0.2874 (15) | 0.4294 (17) | 0.388 (3) | 0.067* | |
C3 | 0.14290 (13) | 0.41514 (15) | 0.4089 (2) | 0.0566 (4) | |
C4 | 0.07707 (14) | 0.38530 (16) | 0.5193 (3) | 0.0612 (5) | |
H4 | 0.0062 (16) | 0.3899 (17) | 0.472 (3) | 0.073* | |
C5 | 0.11328 (15) | 0.35196 (18) | 0.6970 (3) | 0.0655 (5) | |
H5 | 0.0675 (17) | 0.3304 (19) | 0.779 (3) | 0.079* | |
C6 | 0.21440 (15) | 0.34873 (16) | 0.7635 (3) | 0.0627 (5) | |
H6 | 0.2394 (16) | 0.3273 (18) | 0.878 (3) | 0.075* | |
C7 | 0.42774 (12) | 0.28135 (14) | 0.7426 (2) | 0.0518 (4) | |
C8 | 0.53187 (12) | 0.29444 (13) | 0.8356 (2) | 0.0492 (4) | |
C9 | 0.58762 (14) | 0.20077 (15) | 0.8849 (3) | 0.0581 (5) | |
H9 | 0.5605 (15) | 0.1327 (19) | 0.856 (3) | 0.070* | |
C10 | 0.68465 (14) | 0.20926 (17) | 0.9760 (3) | 0.0631 (5) | |
H10 | 0.7217 (16) | 0.1486 (19) | 1.014 (3) | 0.076* | |
C11 | 0.72884 (13) | 0.31058 (17) | 1.0174 (3) | 0.0602 (5) | |
C12 | 0.67287 (14) | 0.40421 (17) | 0.9643 (3) | 0.0614 (5) | |
H12 | 0.7006 (16) | 0.4749 (19) | 0.989 (3) | 0.074* | |
C13 | 0.57564 (13) | 0.39698 (15) | 0.8758 (3) | 0.0561 (4) | |
H13 | 0.5378 (15) | 0.4611 (17) | 0.839 (3) | 0.067* | |
C14 | 0.83424 (15) | 0.3191 (2) | 1.1193 (3) | 0.0819 (7) | |
H14A | 0.8782 | 0.3245 | 1.0322 | 0.098* | |
H14B | 0.8506 | 0.2549 | 1.1944 | 0.098* | |
H14C | 0.8412 | 0.3835 | 1.1961 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0729 (4) | 0.1236 (6) | 0.0670 (4) | 0.0106 (3) | −0.0054 (2) | 0.0248 (3) |
O1 | 0.0505 (7) | 0.0512 (7) | 0.0862 (9) | −0.0002 (5) | −0.0126 (6) | 0.0011 (6) |
O2 | 0.0537 (7) | 0.0552 (8) | 0.0950 (10) | −0.0058 (6) | 0.0059 (7) | −0.0148 (7) |
C1 | 0.0483 (9) | 0.0433 (9) | 0.0673 (10) | 0.0012 (7) | −0.0055 (8) | −0.0030 (8) |
C2 | 0.0517 (9) | 0.0516 (9) | 0.0619 (10) | 0.0013 (8) | 0.0050 (8) | 0.0000 (8) |
C3 | 0.0541 (9) | 0.0547 (10) | 0.0566 (10) | 0.0075 (8) | −0.0011 (8) | 0.0029 (8) |
C4 | 0.0496 (9) | 0.0574 (11) | 0.0735 (12) | 0.0050 (8) | 0.0031 (9) | 0.0024 (9) |
C5 | 0.0618 (11) | 0.0634 (11) | 0.0720 (12) | 0.0015 (9) | 0.0139 (9) | 0.0075 (10) |
C6 | 0.0679 (11) | 0.0571 (11) | 0.0583 (10) | 0.0017 (9) | −0.0006 (9) | 0.0054 (9) |
C7 | 0.0502 (9) | 0.0519 (9) | 0.0525 (9) | −0.0013 (8) | 0.0071 (7) | −0.0023 (7) |
C8 | 0.0482 (9) | 0.0513 (9) | 0.0477 (8) | 0.0003 (7) | 0.0074 (7) | −0.0004 (7) |
C9 | 0.0559 (10) | 0.0495 (10) | 0.0688 (11) | −0.0001 (8) | 0.0111 (8) | 0.0004 (9) |
C10 | 0.0533 (10) | 0.0620 (11) | 0.0733 (12) | 0.0108 (9) | 0.0096 (9) | 0.0114 (9) |
C11 | 0.0487 (9) | 0.0764 (12) | 0.0543 (10) | 0.0012 (8) | 0.0062 (7) | 0.0041 (8) |
C12 | 0.0553 (10) | 0.0593 (11) | 0.0659 (11) | −0.0069 (9) | 0.0016 (8) | −0.0070 (9) |
C13 | 0.0530 (9) | 0.0496 (10) | 0.0622 (10) | 0.0020 (8) | 0.0016 (8) | −0.0026 (8) |
C14 | 0.0545 (11) | 0.1051 (18) | 0.0804 (14) | −0.0022 (11) | −0.0028 (10) | 0.0104 (13) |
C1—C2 | 1.371 (3) | C8—C9 | 1.381 (2) |
C1—C6 | 1.373 (3) | C8—C13 | 1.390 (2) |
C1—O1 | 1.401 (2) | C9—C10 | 1.379 (3) |
C2—C3 | 1.381 (2) | C9—H9 | 0.91 (2) |
C2—H2 | 0.94 (2) | C10—C11 | 1.380 (3) |
C3—C4 | 1.371 (3) | C10—H10 | 0.91 (2) |
C3—Cl1 | 1.7372 (18) | C11—C12 | 1.387 (3) |
C4—C5 | 1.375 (3) | C11—C14 | 1.504 (3) |
C4—H4 | 0.97 (2) | C12—C13 | 1.374 (3) |
C5—C6 | 1.383 (3) | C12—H12 | 0.94 (2) |
C5—H5 | 0.98 (2) | C13—H13 | 0.95 (2) |
C6—H6 | 0.89 (2) | C14—H14A | 0.9600 |
C7—O2 | 1.195 (2) | C14—H14B | 0.9600 |
C7—O1 | 1.365 (2) | C14—H14C | 0.9600 |
C7—C8 | 1.474 (2) | ||
C2—C1—C6 | 122.49 (17) | C13—C8—C7 | 122.60 (15) |
C2—C1—O1 | 117.87 (17) | C10—C9—C8 | 120.27 (17) |
C6—C1—O1 | 119.54 (17) | C10—C9—H9 | 119.7 (13) |
C1—C2—C3 | 117.26 (18) | C8—C9—H9 | 120.1 (13) |
C1—C2—H2 | 122.8 (13) | C9—C10—C11 | 121.26 (18) |
C3—C2—H2 | 119.9 (13) | C9—C10—H10 | 121.6 (14) |
C4—C3—C2 | 122.20 (17) | C11—C10—H10 | 117.1 (14) |
C4—C3—Cl1 | 119.04 (14) | C10—C11—C12 | 118.08 (17) |
C2—C3—Cl1 | 118.76 (15) | C10—C11—C14 | 120.93 (18) |
C3—C4—C5 | 118.89 (17) | C12—C11—C14 | 120.98 (19) |
C3—C4—H4 | 119.9 (12) | C13—C12—C11 | 121.28 (18) |
C5—C4—H4 | 121.2 (13) | C13—C12—H12 | 118.1 (13) |
C4—C5—C6 | 120.6 (2) | C11—C12—H12 | 120.6 (14) |
C4—C5—H5 | 120.3 (13) | C12—C13—C8 | 120.07 (17) |
C6—C5—H5 | 119.1 (13) | C12—C13—H13 | 121.0 (13) |
C1—C6—C5 | 118.57 (18) | C8—C13—H13 | 118.9 (13) |
C1—C6—H6 | 119.4 (14) | C11—C14—H14A | 109.5 |
C5—C6—H6 | 122.0 (14) | C11—C14—H14B | 109.5 |
O2—C7—O1 | 122.00 (15) | H14A—C14—H14B | 109.5 |
O2—C7—C8 | 126.27 (16) | C11—C14—H14C | 109.5 |
O1—C7—C8 | 111.73 (14) | H14A—C14—H14C | 109.5 |
C9—C8—C13 | 119.03 (16) | H14B—C14—H14C | 109.5 |
C9—C8—C7 | 118.37 (15) | C7—O1—C1 | 117.23 (13) |
C6—C1—C2—C3 | −0.2 (3) | C13—C8—C9—C10 | 1.3 (3) |
O1—C1—C2—C3 | −176.61 (15) | C7—C8—C9—C10 | −178.50 (17) |
C1—C2—C3—C4 | −0.5 (3) | C8—C9—C10—C11 | −1.0 (3) |
C1—C2—C3—Cl1 | 179.81 (14) | C9—C10—C11—C12 | −0.2 (3) |
C2—C3—C4—C5 | 0.5 (3) | C9—C10—C11—C14 | 179.1 (2) |
Cl1—C3—C4—C5 | −179.75 (15) | C10—C11—C12—C13 | 1.1 (3) |
C3—C4—C5—C6 | 0.1 (3) | C14—C11—C12—C13 | −178.1 (2) |
C2—C1—C6—C5 | 0.8 (3) | C11—C12—C13—C8 | −0.8 (3) |
O1—C1—C6—C5 | 177.16 (17) | C9—C8—C13—C12 | −0.4 (3) |
C4—C5—C6—C1 | −0.8 (3) | C7—C8—C13—C12 | 179.41 (17) |
O2—C7—C8—C9 | −4.5 (3) | O2—C7—O1—C1 | 7.6 (3) |
O1—C7—C8—C9 | 175.56 (16) | C8—C7—O1—C1 | −172.44 (15) |
O2—C7—C8—C13 | 175.72 (19) | C2—C1—O1—C7 | −109.35 (18) |
O1—C7—C8—C13 | −4.2 (2) | C6—C1—O1—C7 | 74.1 (2) |
Experimental details
Crystal data | |
Chemical formula | C14H11ClO2 |
Mr | 246.68 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 13.706 (2), 12.142 (2), 7.3807 (5) |
β (°) | 100.625 (9) |
V (Å3) | 1207.2 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.69 |
Crystal size (mm) | 0.50 × 0.27 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.344, 0.767 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4283, 2146, 1801 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.111, 1.04 |
No. of reflections | 2146 |
No. of parameters | 179 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.28 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2007, 2008), the structure of 3-chlorophenyl 4-methylbenzoate (3CP4MBA) has been determined. The structure of 3CP4MBA (Fig. 1) is similar to those of 3-methylphenyl 4-methyl- benzoate (3MP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) and other aryl benzoates (Gowda et al., 2007, 2008). The bond parameters in 3CP4MBA are similar to those in 3MP4MBA, 4MP4MBA, 4CP4MBA and other aryl benzoates. The dihedral angle between the benzene and phenyl rings in 3CP4MBA is 71.75 (7)°, compared to the values of 56.82 (7)° in 3MP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, the molecules are elongated approximatelly along the [101] direction and stacked along the c axis (Fig. 2).