metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(nitrato-κ2O,O′)silver(I)]-μ-1,2-bis­­(di­phenyl­phosphino)ethane-κ2P:P′]

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: jxstnu116@yahoo.cn

(Received 25 June 2008; accepted 26 June 2008; online 5 July 2008)

In the title chain compound, [Ag(NO3)(C26H24P2)]n, the bis­(diphenyl­phosphino)ethane (dppe) units link the Ag+ ions into chains along [001]. A nitrate anion is coordinated to the Ag atom. There is a centre of symmetry at the mid-point of the ethane C—C bond and a twofold rotation axis passes through the Ag, N and terminal O atoms. Each Ag atom is four-coordinated in a distorted tetra­hedral geometry by two O atoms of the nitrate anion and two P atoms of dppe ligands. The two aromatic rings are oriented at a dihedral angle of 73.77 (3)°.

Related literature

For related literature, see: Harker & Tiekink (1990[Harker, C. S. W. & Tiekink, E. R. T. (1990). J. Coord. Chem. 21, 287-293.]); Huang et al. (1991[Huang, M. S., Zhang, P., Zhang, Y., Yang, H. H. & Zheng, L. S. (1991). Acta Phys. Chim. Sinica, 7, 694-698.]); Menezes Vicenti & Burrow (2007); Yang et al. (1992[Yang, H. H., Zheng, L. S., Xu, Y. J. & Zhang, Q. E. (1992). Chin. J. Inorg. Chem. 8, 65-67.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C26H24P2)]

  • Mr = 568.27

  • Monoclinic, C 2/c

  • a = 17.123 (3) Å

  • b = 14.064 (3) Å

  • c = 11.120 (2) Å

  • β = 108.33 (3)°

  • V = 2542.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 223.2 K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.704, Tmax = 0.833

  • 12170 measured reflections

  • 2327 independent reflections

  • 2161 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.07

  • 2327 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—P1 2.4066 (9)
Ag1—O1 2.508 (2)
P1—Ag1—P1i 137.49 (4)
P1—Ag1—O1i 115.92 (7)
P1—Ag1—O1 102.63 (6)
O1i—Ag1—O1 50.52 (11)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complexes obtained by the reaction of AgNO3 with bis(diphenylphosphino)- ethane), dppe, include mono-nuclear complex Ag(dppe)(NO3), (II) (Harker & Tiekink, 1990), binuclear complex [Ag(dppe)]2(NO3)2.2MeOH, (III) (Yang et al., 1992), and one-dimensional polymers: [Ag4(dppe)3(NO3)4]n, (III) (Huang et al., 1991) and [Ag(dppe)(NO3)(DMF)]n, (IV) (Menezes Vicenti & Burrow, 2007). We report herein the formation of a one-dimensional coordination polymer, (I), using AgNO3 as the metal source and dppe as bidentate bridging ligand, and its crystal structure.

The structure of the title compound, (I), is polymeric with dppe bridging ligands between Ag centres to form a chain (Fig. 1). There is one dppe ligand in the asymmetric unit. The remaining parts are generated by crystallographic centres of inversion at the mid-points of the C-C bond of the ethane group. The polymeric chains are elongated along [001] direction (Fig. 2). A nitrate anion is coordinated to the Ag atom, in which a twofold rotation axis passes through the N1-O2 bond. Each Ag atom is four-coordinated in a distorted tetrahedral geometry (Table 1) by two O atoms of the nitrate anion and two P atoms of dppe ligands. The two aromatic rings are oriented at a dihedral angle of 73.77 (3)°.

Related literature top

For related literature, see: Harker & Tiekink (1990); Huang et al. (1991); Menezes Vicenti & Burrow (2007); Yang et al. (1992).

Experimental top

For the preparation of the title compound, dppe (20 mg, 0.05 mmol) was dissolved in CH2Cl2 (5 ml) and was poured into the tube, then MeOH (3 ml) was layered on it. Finally, MeOH solution (5 ml) containing AgNO3 (8.5 mg, 0.05 mmol) was layered on the top of the tube. The crystals of the title compound, (I), were obtained for about 3 d.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, 1/2 - z].
[Figure 2] Fig. 2. The coordination polymer of (I) [symmetry code: (A) -x, y, 1/2 - z] along the c axis.
catena-Poly[[(nitrato-κ2O,O')silver(I)]- µ-1,2-bis(diphenylphosphino)ethane-κ2P:P'] top
Crystal data top
[Ag(NO3)(C26H24P2)]F(000) = 1152
Mr = 568.27Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5049 reflections
a = 17.123 (3) Åθ = 3.5–25.3°
b = 14.064 (3) ŵ = 0.95 mm1
c = 11.120 (2) ÅT = 223 K
β = 108.33 (3)°Block, colorless
V = 2542.0 (9) Å30.30 × 0.26 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
2327 independent reflections
Radiation source: fine-focus sealed tube2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 14.6306 pixels mm-1θmax = 25.3°, θmin = 3.5°
ω scansh = 2019
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1615
Tmin = 0.704, Tmax = 0.833l = 1313
12170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0457P)2 + 4.2828P]
where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ag(NO3)(C26H24P2)]V = 2542.0 (9) Å3
Mr = 568.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.123 (3) ŵ = 0.95 mm1
b = 14.064 (3) ÅT = 223 K
c = 11.120 (2) Å0.30 × 0.26 × 0.20 mm
β = 108.33 (3)°
Data collection top
Rigaku Mercury
diffractometer
2327 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2161 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.833Rint = 0.031
12170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.97 e Å3
2327 reflectionsΔρmin = 0.45 e Å3
151 parameters
Special details top

Experimental. no

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.00000.33644 (2)0.25000.03718 (14)
P10.08413 (5)0.39847 (5)0.13087 (7)0.02910 (19)
O10.06120 (15)0.17517 (16)0.3151 (2)0.0493 (6)
O20.00000.0421 (3)0.25000.0783 (13)
N10.00000.1292 (3)0.25000.0409 (9)
C10.18506 (17)0.4287 (2)0.2384 (3)0.0342 (7)
C20.2341 (2)0.5014 (3)0.2188 (3)0.0486 (8)
H2A0.21600.53810.14570.058*
C30.3100 (2)0.5200 (3)0.3075 (4)0.0635 (11)
H3A0.34260.56930.29430.076*
C40.3370 (2)0.4648 (3)0.4153 (4)0.0633 (11)
H4A0.38780.47710.47500.076*
C50.2902 (2)0.3933 (3)0.4345 (4)0.0612 (11)
H5A0.30940.35600.50690.073*
C60.2142 (2)0.3747 (3)0.3484 (3)0.0472 (8)
H6A0.18220.32570.36390.057*
C70.10284 (19)0.3224 (2)0.0110 (3)0.0351 (7)
C80.1568 (2)0.3472 (3)0.0540 (4)0.0529 (9)
H8A0.18490.40480.03670.064*
C90.1693 (3)0.2867 (3)0.1445 (4)0.0690 (12)
H9A0.20500.30400.18880.083*
C100.1292 (3)0.2022 (3)0.1684 (4)0.0702 (13)
H10A0.13850.16130.22820.084*
C110.0753 (3)0.1761 (3)0.1058 (4)0.0677 (13)
H11A0.04770.11830.12370.081*
C120.0620 (2)0.2364 (2)0.0154 (3)0.0490 (9)
H12A0.02550.21890.02740.059*
C130.04348 (17)0.5080 (2)0.0442 (3)0.0339 (6)
H13A0.04320.55820.10390.041*
H13B0.07870.52780.00460.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0364 (2)0.0378 (2)0.0391 (2)0.0000.01439 (15)0.000
P10.0287 (4)0.0281 (4)0.0297 (4)0.0031 (3)0.0081 (3)0.0020 (3)
O10.0397 (13)0.0446 (14)0.0527 (14)0.0038 (10)0.0010 (11)0.0004 (11)
O20.077 (3)0.038 (2)0.118 (4)0.0000.029 (3)0.000
N10.042 (2)0.033 (2)0.049 (2)0.0000.0154 (19)0.000
C10.0290 (15)0.0384 (16)0.0348 (15)0.0051 (12)0.0096 (13)0.0052 (13)
C20.0403 (19)0.049 (2)0.054 (2)0.0047 (15)0.0113 (16)0.0005 (16)
C30.0357 (19)0.063 (3)0.088 (3)0.0127 (17)0.014 (2)0.018 (2)
C40.0361 (19)0.082 (3)0.059 (2)0.006 (2)0.0046 (18)0.028 (2)
C50.047 (2)0.083 (3)0.043 (2)0.015 (2)0.0008 (18)0.0020 (19)
C60.0372 (18)0.062 (2)0.0404 (18)0.0085 (16)0.0087 (15)0.0075 (16)
C70.0380 (17)0.0331 (16)0.0326 (15)0.0098 (12)0.0088 (13)0.0003 (12)
C80.054 (2)0.052 (2)0.060 (2)0.0011 (17)0.0288 (19)0.0087 (17)
C90.077 (3)0.081 (3)0.062 (3)0.013 (2)0.040 (2)0.015 (2)
C100.097 (3)0.063 (3)0.049 (2)0.027 (2)0.021 (2)0.014 (2)
C110.107 (4)0.040 (2)0.047 (2)0.000 (2)0.011 (2)0.0088 (17)
C120.071 (2)0.0376 (18)0.0369 (17)0.0022 (16)0.0145 (17)0.0004 (14)
C130.0335 (16)0.0294 (15)0.0366 (15)0.0031 (12)0.0080 (13)0.0042 (12)
Geometric parameters (Å, º) top
Ag1—P12.4066 (9)C5—C61.376 (5)
Ag1—P1i2.4066 (9)C5—H5A0.9300
Ag1—O1i2.508 (2)C6—H6A0.9300
Ag1—O12.508 (2)C7—C121.381 (5)
P1—C71.815 (3)C7—C81.386 (5)
P1—C11.816 (3)C8—C91.385 (5)
P1—C131.834 (3)C8—H8A0.9300
O1—N11.250 (3)C9—C101.357 (7)
O2—N11.225 (5)C9—H9A0.9300
N1—O1i1.250 (3)C10—C111.370 (7)
C1—C21.382 (5)C10—H10A0.9300
C1—C61.393 (4)C11—C121.387 (5)
C2—C31.388 (5)C11—H11A0.9300
C2—H2A0.9300C12—H12A0.9300
C3—C41.381 (6)C13—C13ii1.521 (6)
C3—H3A0.9300C13—H13A0.9700
C4—C51.343 (6)C13—H13B0.9700
C4—H4A0.9300
P1—Ag1—P1i137.49 (4)C4—C5—H5A119.6
P1—Ag1—O1i115.92 (7)C6—C5—H5A119.6
P1i—Ag1—O1i102.63 (7)C5—C6—C1120.4 (4)
P1—Ag1—O1102.63 (6)C5—C6—H6A119.8
P1i—Ag1—O1115.92 (7)C1—C6—H6A119.8
O1i—Ag1—O150.52 (11)C12—C7—C8119.1 (3)
C7—P1—C1105.68 (14)C12—C7—P1118.6 (3)
C7—P1—C13103.59 (14)C8—C7—P1122.4 (3)
C1—P1—C13105.93 (14)C9—C8—C7120.3 (4)
C7—P1—Ag1117.71 (11)C9—C8—H8A119.8
C1—P1—Ag1109.46 (10)C7—C8—H8A119.8
C13—P1—Ag1113.56 (10)C10—C9—C8119.8 (4)
N1—O1—Ag195.88 (19)C10—C9—H9A120.1
O2—N1—O1121.14 (18)C8—C9—H9A120.1
O2—N1—O1i121.14 (18)C9—C10—C11121.0 (4)
O1—N1—O1i117.7 (4)C9—C10—H10A119.5
C2—C1—C6118.3 (3)C11—C10—H10A119.5
C2—C1—P1124.7 (2)C10—C11—C12119.7 (4)
C6—C1—P1117.0 (3)C10—C11—H11A120.2
C1—C2—C3120.5 (4)C12—C11—H11A120.2
C1—C2—H2A119.8C7—C12—C11120.1 (4)
C3—C2—H2A119.8C7—C12—H12A119.9
C4—C3—C2119.6 (4)C11—C12—H12A119.9
C4—C3—H3A120.2C13ii—C13—P1110.4 (3)
C2—C3—H3A120.2C13ii—C13—H13A109.6
C5—C4—C3120.4 (3)P1—C13—H13A109.6
C5—C4—H4A119.8C13ii—C13—H13B109.6
C3—C4—H4A119.8P1—C13—H13B109.6
C4—C5—C6120.9 (4)H13A—C13—H13B108.1
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C26H24P2)]
Mr568.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)17.123 (3), 14.064 (3), 11.120 (2)
β (°) 108.33 (3)
V3)2542.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.704, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
12170, 2327, 2161
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.07
No. of reflections2327
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—P12.4066 (9)Ag1—O1i2.508 (2)
Ag1—P1i2.4066 (9)Ag1—O12.508 (2)
P1—Ag1—P1i137.49 (4)P1—Ag1—O1102.63 (6)
P1—Ag1—O1i115.92 (7)P1i—Ag1—O1115.92 (7)
P1i—Ag1—O1i102.63 (7)O1i—Ag1—O150.52 (11)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

References

First citationHarker, C. S. W. & Tiekink, E. R. T. (1990). J. Coord. Chem. 21, 287–293.  CrossRef CAS Google Scholar
First citationHuang, M. S., Zhang, P., Zhang, Y., Yang, H. H. & Zheng, L. S. (1991). Acta Phys. Chim. Sinica, 7, 694–698.  CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMenezes Vicenti, J. R. de & Burrow, R. A. (2007). Acta Cryst. C63, m88–m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. H., Zheng, L. S., Xu, Y. J. & Zhang, Q. E. (1992). Chin. J. Inorg. Chem. 8, 65–67.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds