organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(3-Pyrid­yl)-3-(3,4,5-tri­meth­oxy­phen­yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aDepartment of Biology and Environment Technology, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environment Science, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, and cDepartment of Chemistry, College of Science, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@gz139.com.cn

(Received 26 June 2008; accepted 30 June 2008; online 5 July 2008)

In the mol­ecule of the title compound, C17H15N5O3S, the planar central heterocylic ring system is oriented with respect to the benzene and pyridine rings at dihedral angles of 6.61 (3) and 19.22 (3)°, respectively. An intra­molecular C—H⋯N hydrogen bond results in the formation of a six-membered ring, adopting a flattened boat conformation. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Karabasanagouda et al. (2007[Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521-529.]); Mathew et al. (2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N5O3S

  • Mr = 369.40

  • Monoclinic, P 21 /c

  • a = 7.4682 (15) Å

  • b = 14.128 (3) Å

  • c = 15.550 (3) Å

  • β = 90.46 (3)°

  • V = 1640.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 (2) K

  • 0.20 × 0.06 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.956, Tmax = 0.991

  • 18716 measured reflections

  • 3620 independent reflections

  • 3121 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.108

  • S = 1.17

  • 3620 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N4 0.95 2.40 3.0869 (19) 129
C9—H9A⋯N1i 0.98 2.60 3.576 (2) 171
C8—H8C⋯N5ii 0.98 2.63 3.573 (2) 161
C14—H14⋯N2iii 0.95 2.57 3.410 (2) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and 1,3,4-thiadiazole represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities. Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles are associated with diverse pharmacological activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory activity (Mathew et al., 2007). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C1–C6), B (N1–N3/C10/C11), C (S1/N3/N4/C11/C12) and D (N5/C13–C17) are, of course, planar, and the dihedral angles between them are A/B = 6.28 (3)°, A/C = 6.97 (3)°, A/D = 25.30 (3)°, B/C = 0.95 (2)°, B/D = 19.38 (3)° and C/D = 19.06 (3)°. So, rings B and C are nearly coplanar. The coplanar ring system is oriented with respect to rings A and D at dihedral angles of 6.61 (3)° and 19.22 (3)°. The intramolecular C—H···N hydrogen bond (Table 1) results in the formation of a six-membered ring E (N3/N4/C1/C2/C10/H2), in which it adopts flattened-boat [ϕ = -95.41 (2)° and θ = 21.96 (3)°] conformation, having total puckering amplitude, QT, of 1.463 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Karabasanagouda et al. (2007); Mathew et al. (2007). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, 4-amino-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol (0.01 M) and nicotinic acid (0.01 M) were dissolved in dry phosphorous oxychloride (10 ml). The resulted solution was further heated under reflux for 7 h. The reaction mixture was cooled to room temperature and the mixture was gradually poured onto crushed ice with stirring. Finally, powdered potassium carbonate and the required amount of solid potassium hydroxide were added until the pH of the mixture was raised to 8, to remove the excess of phosphorous oxychloride. The mixture was allowed to stand overnight and the solid was separated. It was filtered, washed with cold water, and then dried. Crystals suitable for X-ray analysis were obtained by the recrystallization of the solid residue from a mixture of N,N-dimethylformamide/ethanol (1:1) by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
6-(3-Pyridyl)-3-(3,4,5-trimethoxyphenyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C17H15N5O3SF(000) = 768
Mr = 369.40Dx = 1.496 Mg m3
Monoclinic, P21/cMelting point: 448K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4682 (15) ÅCell parameters from 4807 reflections
b = 14.128 (3) Åθ = 1.9–27.1°
c = 15.550 (3) ŵ = 0.23 mm1
β = 90.46 (3)°T = 113 K
V = 1640.6 (6) Å3Prism, colourless
Z = 40.20 × 0.06 × 0.04 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3620 independent reflections
Radiation source: rotating anode3121 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.2°, θmin = 2.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1818
Tmin = 0.956, Tmax = 0.991l = 1919
18716 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
3620 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H15N5O3SV = 1640.6 (6) Å3
Mr = 369.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4682 (15) ŵ = 0.23 mm1
b = 14.128 (3) ÅT = 113 K
c = 15.550 (3) Å0.20 × 0.06 × 0.04 mm
β = 90.46 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3620 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3121 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.034
18716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.17Δρmax = 0.48 e Å3
3620 reflectionsΔρmin = 0.41 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47268 (5)0.30203 (2)0.32685 (2)0.01906 (12)
O10.09766 (15)0.49470 (8)0.82026 (7)0.0250 (3)
O20.02336 (14)0.65367 (8)0.74798 (7)0.0239 (3)
O30.02728 (14)0.69219 (7)0.58349 (7)0.0236 (3)
N10.46168 (17)0.25227 (9)0.50417 (8)0.0228 (3)
N20.39750 (17)0.30533 (9)0.57349 (8)0.0217 (3)
N30.36415 (15)0.39115 (8)0.45790 (8)0.0167 (3)
N40.32966 (15)0.45519 (8)0.39312 (7)0.0167 (3)
N50.32739 (18)0.61126 (9)0.16139 (9)0.0242 (3)
C10.24914 (18)0.45989 (10)0.59768 (9)0.0178 (3)
C20.18824 (19)0.54403 (10)0.56074 (9)0.0183 (3)
H20.20850.55690.50170.022*
C30.09733 (18)0.60873 (10)0.61183 (9)0.0184 (3)
C40.07026 (18)0.59006 (10)0.69890 (9)0.0186 (3)
C50.13206 (18)0.50562 (11)0.73504 (9)0.0192 (3)
C60.22174 (18)0.43975 (10)0.68450 (9)0.0189 (3)
H60.26360.38200.70870.023*
C70.1537 (2)0.40859 (12)0.85975 (10)0.0285 (4)
H7A0.09530.35510.83090.043*
H7B0.12060.40920.92060.043*
H7C0.28390.40230.85490.043*
C80.0881 (2)0.72143 (13)0.78883 (11)0.0321 (4)
H8A0.16800.68950.82980.048*
H8B0.01390.76740.81940.048*
H8C0.15960.75430.74550.048*
C90.0629 (2)0.71792 (11)0.49656 (10)0.0240 (3)
H9A0.19220.72580.48900.036*
H9B0.00190.77760.48300.036*
H9C0.01900.66810.45800.036*
C100.33868 (18)0.38808 (10)0.54526 (9)0.0176 (3)
C110.43862 (19)0.30623 (10)0.43654 (10)0.0183 (3)
C120.38009 (18)0.41649 (10)0.32131 (9)0.0166 (3)
C130.36482 (18)0.46502 (10)0.23842 (9)0.0171 (3)
C140.37053 (19)0.41517 (10)0.16155 (9)0.0207 (3)
H140.38650.34850.16140.025*
C150.3526 (2)0.46451 (11)0.08527 (10)0.0237 (3)
H150.35550.43220.03170.028*
C160.3304 (2)0.56120 (11)0.08802 (10)0.0234 (3)
H160.31660.59430.03520.028*
C170.34453 (19)0.56304 (10)0.23455 (10)0.0207 (3)
H170.34280.59730.28710.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0235 (2)0.01467 (19)0.0190 (2)0.00266 (13)0.00292 (15)0.00077 (12)
O10.0308 (6)0.0273 (6)0.0169 (5)0.0015 (5)0.0062 (4)0.0028 (4)
O20.0222 (5)0.0234 (6)0.0262 (6)0.0008 (4)0.0076 (4)0.0053 (4)
O30.0308 (6)0.0189 (5)0.0211 (6)0.0049 (4)0.0035 (5)0.0012 (4)
N10.0290 (7)0.0187 (6)0.0208 (7)0.0034 (5)0.0040 (5)0.0011 (5)
N20.0263 (7)0.0186 (6)0.0202 (7)0.0021 (5)0.0023 (5)0.0004 (5)
N30.0183 (6)0.0140 (6)0.0176 (6)0.0004 (5)0.0011 (5)0.0001 (4)
N40.0173 (6)0.0154 (6)0.0172 (6)0.0005 (4)0.0001 (5)0.0022 (4)
N50.0308 (7)0.0171 (6)0.0248 (7)0.0010 (5)0.0001 (6)0.0014 (5)
C10.0158 (6)0.0181 (7)0.0194 (7)0.0026 (5)0.0001 (6)0.0021 (5)
C20.0194 (7)0.0192 (7)0.0162 (7)0.0024 (5)0.0011 (5)0.0001 (5)
C30.0167 (7)0.0165 (7)0.0218 (7)0.0020 (5)0.0009 (6)0.0013 (5)
C40.0161 (6)0.0196 (7)0.0202 (7)0.0029 (5)0.0042 (6)0.0042 (6)
C50.0180 (7)0.0230 (7)0.0167 (7)0.0054 (6)0.0021 (6)0.0008 (6)
C60.0176 (7)0.0187 (7)0.0206 (7)0.0019 (6)0.0003 (6)0.0001 (5)
C70.0331 (9)0.0328 (9)0.0195 (8)0.0028 (7)0.0024 (7)0.0065 (7)
C80.0359 (9)0.0312 (9)0.0293 (9)0.0037 (7)0.0016 (7)0.0147 (7)
C90.0274 (8)0.0205 (7)0.0240 (8)0.0011 (6)0.0009 (6)0.0031 (6)
C100.0180 (7)0.0184 (7)0.0163 (7)0.0036 (5)0.0005 (5)0.0005 (5)
C110.0187 (7)0.0148 (7)0.0214 (7)0.0004 (5)0.0022 (6)0.0008 (5)
C120.0162 (6)0.0135 (6)0.0200 (7)0.0012 (5)0.0007 (5)0.0013 (5)
C130.0150 (6)0.0171 (7)0.0192 (7)0.0009 (5)0.0022 (5)0.0003 (5)
C140.0238 (7)0.0159 (7)0.0225 (7)0.0009 (6)0.0032 (6)0.0014 (5)
C150.0269 (8)0.0243 (8)0.0199 (7)0.0032 (6)0.0035 (6)0.0020 (6)
C160.0249 (7)0.0254 (8)0.0200 (7)0.0010 (6)0.0000 (6)0.0048 (6)
C170.0247 (7)0.0169 (7)0.0205 (7)0.0009 (6)0.0004 (6)0.0023 (5)
Geometric parameters (Å, º) top
S1—C111.7275 (15)C3—C41.396 (2)
S1—C121.7606 (14)C4—C51.396 (2)
O1—C51.3607 (17)C5—C61.393 (2)
O1—C71.4242 (19)C6—H60.9500
O2—C41.3739 (17)C7—H7A0.9800
O2—C81.416 (2)C7—H7B0.9800
O3—C31.3616 (17)C7—H7C0.9800
O3—C91.4269 (18)C8—H8A0.9800
N1—C111.3092 (19)C8—H8B0.9800
N1—N21.4007 (17)C8—H8C0.9800
N2—C101.3225 (19)C9—H9A0.9800
N3—C111.3645 (18)C9—H9B0.9800
N3—C101.3739 (18)C9—H9C0.9800
N3—N41.3767 (16)C12—C131.4637 (19)
N4—C121.3016 (18)C13—C141.388 (2)
N5—C171.331 (2)C13—C171.394 (2)
N5—C161.343 (2)C14—C151.381 (2)
C1—C21.395 (2)C14—H140.9500
C1—C61.396 (2)C15—C161.377 (2)
C1—C101.466 (2)C15—H150.9500
C2—C31.392 (2)C16—H160.9500
C2—H20.9500C17—H170.9500
C11—S1—C1287.47 (7)O2—C8—H8B109.5
C5—O1—C7117.36 (12)H8A—C8—H8B109.5
C4—O2—C8113.05 (11)O2—C8—H8C109.5
C3—O3—C9116.95 (11)H8A—C8—H8C109.5
C11—N1—N2105.24 (12)H8B—C8—H8C109.5
C10—N2—N1109.42 (12)O3—C9—H9A109.5
C11—N3—C10105.84 (12)O3—C9—H9B109.5
C11—N3—N4118.28 (12)H9A—C9—H9B109.5
C10—N3—N4135.86 (12)O3—C9—H9C109.5
C12—N4—N3107.34 (11)H9A—C9—H9C109.5
C17—N5—C16117.03 (13)H9B—C9—H9C109.5
C2—C1—C6121.46 (13)N2—C10—N3107.93 (12)
C2—C1—C10120.62 (13)N2—C10—C1125.37 (13)
C6—C1—C10117.88 (13)N3—C10—C1126.53 (13)
C3—C2—C1118.93 (13)N1—C11—N3111.57 (13)
C3—C2—H2120.5N1—C11—S1138.90 (12)
C1—C2—H2120.5N3—C11—S1109.52 (10)
O3—C3—C2124.89 (13)N4—C12—C13122.53 (13)
O3—C3—C4114.79 (13)N4—C12—S1117.39 (11)
C2—C3—C4120.32 (13)C13—C12—S1120.07 (10)
O2—C4—C5120.23 (13)C14—C13—C17118.08 (14)
O2—C4—C3119.58 (13)C14—C13—C12121.19 (13)
C5—C4—C3120.15 (13)C17—C13—C12120.72 (13)
O1—C5—C6124.69 (14)C15—C14—C13118.68 (14)
O1—C5—C4115.13 (12)C15—C14—H14120.7
C6—C5—C4120.18 (13)C13—C14—H14120.7
C5—C6—C1118.96 (14)C16—C15—C14119.00 (14)
C5—C6—H6120.5C16—C15—H15120.5
C1—C6—H6120.5C14—C15—H15120.5
O1—C7—H7A109.5N5—C16—C15123.50 (14)
O1—C7—H7B109.5N5—C16—H16118.3
H7A—C7—H7B109.5C15—C16—H16118.3
O1—C7—H7C109.5N5—C17—C13123.69 (14)
H7A—C7—H7C109.5N5—C17—H17118.2
H7B—C7—H7C109.5C13—C17—H17118.2
O2—C8—H8A109.5
C11—N1—N2—C100.12 (16)N4—N3—C10—C13.5 (2)
C11—N3—N4—C120.04 (16)C2—C1—C10—N2178.36 (14)
C10—N3—N4—C12178.10 (15)C6—C1—C10—N20.5 (2)
C6—C1—C2—C30.4 (2)C2—C1—C10—N33.7 (2)
C10—C1—C2—C3177.37 (13)C6—C1—C10—N3174.15 (13)
C9—O3—C3—C25.2 (2)N2—N1—C11—N30.27 (16)
C9—O3—C3—C4175.44 (12)N2—N1—C11—S1179.02 (14)
C1—C2—C3—O3178.33 (13)C10—N3—C11—N10.54 (16)
C1—C2—C3—C41.0 (2)N4—N3—C11—N1179.19 (12)
C8—O2—C4—C590.63 (17)C10—N3—C11—S1178.96 (9)
C8—O2—C4—C391.79 (17)N4—N3—C11—S10.31 (15)
O3—C3—C4—O20.86 (19)C12—S1—C11—N1178.89 (18)
C2—C3—C4—O2178.51 (13)C12—S1—C11—N30.40 (10)
O3—C3—C4—C5178.45 (13)N3—N4—C12—C13179.41 (12)
C2—C3—C4—C50.9 (2)N3—N4—C12—S10.38 (14)
C7—O1—C5—C61.6 (2)C11—S1—C12—N40.48 (11)
C7—O1—C5—C4178.36 (13)C11—S1—C12—C13179.54 (12)
O2—C4—C5—O12.16 (19)N4—C12—C13—C14161.57 (13)
C3—C4—C5—O1179.73 (12)S1—C12—C13—C1419.42 (18)
O2—C4—C5—C6177.85 (13)N4—C12—C13—C1718.6 (2)
C3—C4—C5—C60.3 (2)S1—C12—C13—C17160.41 (11)
O1—C5—C6—C1179.70 (13)C17—C13—C14—C151.2 (2)
C4—C5—C6—C10.3 (2)C12—C13—C14—C15178.97 (13)
C2—C1—C6—C50.2 (2)C13—C14—C15—C160.3 (2)
C10—C1—C6—C5178.05 (13)C17—N5—C16—C150.9 (2)
N1—N2—C10—N30.46 (16)C14—C15—C16—N50.9 (2)
N1—N2—C10—C1175.04 (13)C16—N5—C17—C130.1 (2)
C11—N3—C10—N20.60 (15)C14—C13—C17—N51.1 (2)
N4—N3—C10—N2178.89 (14)C12—C13—C17—N5179.02 (13)
C11—N3—C10—C1174.83 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N40.952.403.0869 (19)129
C9—H9A···N1i0.982.603.576 (2)171
C8—H8C···N5ii0.982.633.573 (2)161
C14—H14···N2iii0.952.573.410 (2)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H15N5O3S
Mr369.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.4682 (15), 14.128 (3), 15.550 (3)
β (°) 90.46 (3)
V3)1640.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.06 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
18716, 3620, 3121
Rint0.034
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.108, 1.17
No. of reflections3620
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N40.952.403.0869 (19)129.00
C9—H9A···N1i0.982.603.576 (2)171.00
C8—H8C···N5ii0.982.633.573 (2)161.00
C14—H14···N2iii0.952.573.410 (2)148.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Guiyang College (grant No. 2008012) for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKarabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521–529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds