organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-N-[5-(2-meth­oxy­phen­yl)-1,3,4-thia­diazol-2-yl]benzamide hemi­hydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 27 June 2008; accepted 30 June 2008; online 31 July 2008)

In the mol­ecule of the title compound, C17H15N3O3S·0.5H2O, the thia­diazole ring is oriented with respect to the two 2-methoxy­phenyl rings at dihedral angles of 3.70 (3) and 1.74 (2)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar six-membered ring, which is oriented with respect to the thia­diazole ring at a dihedral angle of 1.33 (3)°. Thus, all of the rings are nearly coplanar. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O3S·0.5H2O

  • Mr = 350.40

  • Monoclinic, C 2/c

  • a = 29.950 (6) Å

  • b = 14.561 (3) Å

  • c = 7.6520 (15) Å

  • β = 94.78 (3)°

  • V = 3325.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.937, Tmax = 0.989

  • 6340 measured reflections

  • 3003 independent reflections

  • 1602 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.240

  • S = 1.04

  • 3003 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3 0.86 2.04 2.706 (5) 134
O4—H4⋯N1i 0.85 2.24 2.796 (6) 123
C14—H14A⋯O2ii 0.93 2.49 3.316 (6) 148
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C2-C7), B (S/N1/N2/C8/C9) and C (C12-C17) are, of course, planar. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered planar ring D (N3/H3A/O3/C10/C12/C13). The dihedral angles between the rings are A/B = 3.70 (3)°, A/C = 2.81 (3)°, A/D = 2.45 (3)°, B/C = 1.74 (2)°, B/D = 1.33 (3)° and C/D = 0.90 (3)°. So, all of the rings are nearly coplanar.

In the crystal structure, intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

For preparation of the title compound, a solution of 5-(2-methoxyphenyl) -1,3,4-thiadiazol-2-amine (5 mmol) in pyridine (50 ml) was cooled to 273 K. To this solution, 2-methoxybenzoyl chloride (5 mmol) was added via a drop funnel over period of 30 min. The mixture was stirred at 273 K for 1 h, raised to room temperature and reacted for 1 h. The pyridine was distilled and the solid residue was recrystallized from ethanol to give the title compound (m.p. 513-514 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically, with O-H = 0.85 Å (for H2O), N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Methoxy-N-[5-(2-methoxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide hemihydrate top
Crystal data top
C17H15N3O3S·0.5H2OF(000) = 1464
Mr = 350.40Dx = 1.400 Mg m3
Monoclinic, C2/cMelting point = 513–514 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.950 (6) ÅCell parameters from 25 reflections
b = 14.561 (3) Åθ = 9–12°
c = 7.6520 (15) ŵ = 0.22 mm1
β = 94.78 (3)°T = 298 K
V = 3325.4 (12) Å3Block, colorless
Z = 80.30 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1602 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 3535
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.937, Tmax = 0.989l = 09
6340 measured reflections3 standard reflections every 120 min
3003 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.241 w = 1/[σ2(Fo2) + (0.1018P)2 + 4.918P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3003 reflectionsΔρmax = 0.57 e Å3
222 parametersΔρmin = 0.33 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H15N3O3S·0.5H2OV = 3325.4 (12) Å3
Mr = 350.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.950 (6) ŵ = 0.22 mm1
b = 14.561 (3) ÅT = 298 K
c = 7.6520 (15) Å0.30 × 0.10 × 0.05 mm
β = 94.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1602 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.937, Tmax = 0.9893 standard reflections every 120 min
6340 measured reflections intensity decay: none
3003 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079222 parameters
wR(F2) = 0.241H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
3003 reflectionsΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.14065 (4)0.20610 (9)0.03340 (17)0.0643 (5)
O10.16810 (11)0.1136 (2)0.2572 (5)0.0694 (10)
O20.19106 (10)0.2584 (3)0.3483 (5)0.0761 (11)
O30.09246 (10)0.3994 (2)0.5803 (4)0.0623 (9)
O41.00000.3791 (4)0.25000.139 (3)
H40.99690.35260.34720.167*
N10.06625 (14)0.2824 (4)0.0904 (6)0.0805 (14)
N20.06140 (12)0.2445 (3)0.0693 (5)0.0622 (11)
N30.11780 (9)0.3022 (2)0.3039 (5)0.0430 (8)
H3A0.09690.33240.34900.052*
C10.20716 (19)0.0758 (5)0.3250 (9)0.105 (2)
H1B0.23230.08200.23920.157*
H1C0.21320.10810.42990.157*
H1D0.20220.01200.35160.157*
C20.12874 (16)0.1123 (3)0.3594 (6)0.0575 (12)
C30.09255 (15)0.1571 (3)0.2910 (6)0.0543 (11)
C40.05153 (18)0.1584 (4)0.3904 (7)0.0796 (16)
H4A0.02730.18940.35010.095*
C50.0471 (2)0.1124 (5)0.5522 (8)0.0946 (19)
H5A0.01940.11070.61650.114*
C60.0828 (2)0.0707 (5)0.6157 (8)0.0954 (19)
H6A0.07940.04220.72480.115*
C70.1229 (2)0.0696 (4)0.5235 (7)0.0742 (15)
H7A0.14700.04030.56900.089*
C80.09539 (14)0.2027 (3)0.1186 (6)0.0515 (11)
C90.10742 (16)0.2703 (4)0.1660 (8)0.0652 (14)
C100.16044 (14)0.2990 (3)0.4122 (6)0.0509 (11)
C110.05722 (17)0.4453 (4)0.6622 (8)0.0873 (19)
H11A0.03030.44440.58460.131*
H11B0.06580.50770.68730.131*
H11C0.05200.41430.76940.131*
C120.13322 (14)0.3932 (3)0.6683 (6)0.0486 (10)
C130.16640 (13)0.3438 (3)0.5879 (5)0.0467 (10)
C140.20858 (15)0.3341 (3)0.6785 (6)0.0599 (12)
H14A0.23050.30060.62760.072*
C150.21853 (18)0.3729 (4)0.8408 (7)0.0683 (14)
H15A0.24670.36530.90000.082*
C160.1862 (2)0.4227 (4)0.9133 (7)0.0790 (17)
H16A0.19340.45151.02050.095*
C170.14394 (18)0.4321 (3)0.8354 (7)0.0653 (13)
H17A0.12230.46390.89170.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0561 (8)0.0660 (8)0.0708 (8)0.0122 (6)0.0047 (6)0.0030 (7)
O10.064 (2)0.077 (2)0.069 (2)0.0236 (17)0.0142 (18)0.0027 (19)
O20.0527 (19)0.107 (3)0.068 (2)0.0223 (19)0.0017 (16)0.028 (2)
O30.0505 (18)0.070 (2)0.067 (2)0.0199 (15)0.0081 (16)0.0046 (18)
O40.095 (5)0.093 (5)0.239 (10)0.0000.060 (5)0.000
N10.069 (3)0.105 (4)0.067 (3)0.022 (3)0.006 (2)0.011 (3)
N20.051 (2)0.087 (3)0.047 (2)0.018 (2)0.0025 (17)0.011 (2)
N30.0212 (15)0.0347 (18)0.074 (2)0.0118 (13)0.0067 (16)0.0007 (18)
C10.091 (4)0.124 (5)0.104 (5)0.055 (4)0.040 (4)0.011 (4)
C20.071 (3)0.047 (3)0.054 (3)0.002 (2)0.004 (2)0.000 (2)
C30.060 (3)0.055 (3)0.048 (2)0.003 (2)0.001 (2)0.003 (2)
C40.067 (3)0.102 (4)0.066 (3)0.004 (3)0.014 (3)0.004 (3)
C50.096 (4)0.122 (5)0.062 (3)0.019 (4)0.021 (3)0.015 (3)
C60.129 (5)0.088 (4)0.067 (4)0.011 (4)0.006 (3)0.016 (3)
C70.106 (4)0.058 (3)0.060 (3)0.008 (3)0.016 (3)0.011 (3)
C80.054 (3)0.048 (3)0.052 (2)0.003 (2)0.003 (2)0.000 (2)
C90.054 (3)0.069 (3)0.073 (3)0.015 (3)0.013 (3)0.015 (3)
C100.047 (2)0.049 (3)0.055 (3)0.006 (2)0.003 (2)0.003 (2)
C110.070 (3)0.101 (5)0.095 (4)0.042 (3)0.025 (3)0.002 (4)
C120.050 (2)0.044 (2)0.051 (2)0.0060 (19)0.006 (2)0.004 (2)
C130.045 (2)0.048 (2)0.046 (2)0.0029 (19)0.0030 (19)0.004 (2)
C140.045 (2)0.067 (3)0.067 (3)0.001 (2)0.002 (2)0.003 (3)
C150.069 (3)0.074 (4)0.059 (3)0.011 (3)0.012 (3)0.004 (3)
C160.102 (4)0.064 (3)0.067 (3)0.014 (3)0.021 (3)0.009 (3)
C170.084 (3)0.059 (3)0.055 (3)0.004 (3)0.020 (3)0.009 (2)
Geometric parameters (Å, º) top
S—C81.712 (4)C4—C51.404 (8)
S—C91.751 (6)C4—H4A0.9300
O1—C21.360 (5)C5—C61.354 (9)
O1—C11.429 (6)C5—H5A0.9300
O2—C101.226 (5)C6—C71.343 (8)
O3—C121.347 (5)C6—H6A0.9300
O3—C111.436 (5)C7—H7A0.9300
O4—H40.8501C10—C131.492 (6)
N1—C91.329 (6)C11—H11A0.9600
N1—N21.337 (5)C11—H11B0.9600
N2—C81.271 (5)C11—H11C0.9600
N3—C91.171 (6)C12—C131.409 (6)
N3—C101.464 (5)C12—C171.411 (7)
N3—H3A0.8600C13—C141.397 (6)
C1—H1B0.9600C14—C151.374 (7)
C1—H1C0.9600C14—H14A0.9300
C1—H1D0.9600C15—C161.364 (8)
C2—C71.398 (7)C15—H15A0.9300
C2—C31.404 (6)C16—C171.361 (7)
C3—C41.390 (6)C16—H16A0.9300
C3—C81.472 (6)C17—H17A0.9300
C8—S—C987.3 (2)N2—C8—S113.1 (3)
C2—O1—C1118.8 (4)C3—C8—S127.2 (3)
C12—O3—C11118.8 (4)N3—C9—N1120.5 (5)
C9—N1—N2111.7 (4)N3—C9—S127.8 (4)
C8—N2—N1116.1 (4)N1—C9—S111.7 (4)
C9—N3—C10130.6 (4)O2—C10—N3115.8 (4)
C9—N3—H3A114.7O2—C10—C13122.2 (4)
C10—N3—H3A114.7N3—C10—C13122.0 (4)
O1—C1—H1B109.5O3—C11—H11A109.5
O1—C1—H1C109.5O3—C11—H11B109.5
H1B—C1—H1C109.5H11A—C11—H11B109.5
O1—C1—H1D109.5O3—C11—H11C109.5
H1B—C1—H1D109.5H11A—C11—H11C109.5
H1C—C1—H1D109.5H11B—C11—H11C109.5
O1—C2—C7124.0 (5)O3—C12—C13117.3 (4)
O1—C2—C3116.0 (4)O3—C12—C17123.6 (4)
C7—C2—C3120.0 (5)C13—C12—C17119.0 (4)
C4—C3—C2118.5 (4)C14—C13—C12118.4 (4)
C4—C3—C8117.8 (4)C14—C13—C10116.0 (4)
C2—C3—C8123.7 (4)C12—C13—C10125.5 (4)
C3—C4—C5119.4 (6)C15—C14—C13121.8 (5)
C3—C4—H4A120.3C15—C14—H14A119.1
C5—C4—H4A120.3C13—C14—H14A119.1
C6—C5—C4120.7 (6)C16—C15—C14118.6 (5)
C6—C5—H5A119.6C16—C15—H15A120.7
C4—C5—H5A119.6C14—C15—H15A120.7
C7—C6—C5121.0 (6)C17—C16—C15122.8 (5)
C7—C6—H6A119.5C17—C16—H16A118.6
C5—C6—H6A119.5C15—C16—H16A118.6
C6—C7—C2120.4 (5)C16—C17—C12119.3 (5)
C6—C7—H7A119.8C16—C17—H17A120.4
C2—C7—H7A119.8C12—C17—H17A120.4
N2—C8—C3119.6 (4)
C9—N1—N2—C81.8 (7)N2—N1—C9—N3177.2 (5)
C1—O1—C2—C75.2 (7)N2—N1—C9—S1.8 (6)
C1—O1—C2—C3174.9 (5)C8—S—C9—N3177.8 (5)
O1—C2—C3—C4179.6 (4)C8—S—C9—N11.1 (4)
C7—C2—C3—C40.5 (7)C9—N3—C10—O22.0 (7)
O1—C2—C3—C80.8 (7)C9—N3—C10—C13179.0 (5)
C7—C2—C3—C8179.1 (4)C11—O3—C12—C13176.9 (4)
C2—C3—C4—C52.2 (8)C11—O3—C12—C172.3 (7)
C8—C3—C4—C5177.4 (5)O3—C12—C13—C14178.2 (4)
C3—C4—C5—C63.0 (10)C17—C12—C13—C141.0 (6)
C4—C5—C6—C72.0 (11)O3—C12—C13—C101.1 (6)
C5—C6—C7—C20.3 (10)C17—C12—C13—C10179.7 (4)
O1—C2—C7—C6179.4 (5)O2—C10—C13—C142.1 (7)
C3—C2—C7—C60.5 (8)N3—C10—C13—C14179.0 (4)
N1—N2—C8—C3178.5 (4)O2—C10—C13—C12178.6 (4)
N1—N2—C8—S0.9 (6)N3—C10—C13—C120.3 (7)
C4—C3—C8—N22.9 (7)C12—C13—C14—C151.3 (7)
C2—C3—C8—N2177.5 (5)C10—C13—C14—C15179.3 (4)
C4—C3—C8—S176.4 (4)C13—C14—C15—C160.7 (8)
C2—C3—C8—S3.2 (7)C14—C15—C16—C173.1 (9)
C9—S—C8—N20.2 (4)C15—C16—C17—C123.5 (8)
C9—S—C8—C3179.5 (4)O3—C12—C17—C16179.5 (4)
C10—N3—C9—N1179.7 (4)C13—C12—C17—C161.3 (7)
C10—N3—C9—S0.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O30.862.042.706 (5)134
O4—H4···N1i0.852.242.796 (6)123
C14—H14A···O2ii0.932.493.316 (6)148
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3O3S·0.5H2O
Mr350.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)29.950 (6), 14.561 (3), 7.6520 (15)
β (°) 94.78 (3)
V3)3325.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.937, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6340, 3003, 1602
Rint0.061
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.241, 1.04
No. of reflections3003
No. of parameters222
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O30.862.042.706 (5)134.00
O4—H4···N1i0.852.242.796 (6)123.00
C14—H14A···O2ii0.932.493.316 (6)148.00
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-qin Wang, Analysis Centre, Nanjing University, for providing diffractometer time.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds