organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Benzamido­phen­yl)-4-(4-hy­droxy­phen­yl)-5-methyl-4H-1,2,4-triazol-1-ium chloride

aInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 8 July 2008; accepted 10 July 2008; online 16 July 2008)

In the mol­ecule of the title compound, C22H19N4O2+·Cl, the 1,2,4-triazole ring is oriented at dihedral angles of 75.57 (14), 53.23 (13) and 68.11 (13)° with respect to the benzamide, aniline and phenol atomatic rings, respectively. An intra­molecular C—H⋯O hydrogen bond results in the formation of a non-planar ten-membered ring. In the crystal structure, inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds link the mol­ecules. There is a C—H⋯π contact between the methyl group and the phenyl ring, and a ππ contact between the hydroxy­phenyl and phenyl rings [centroid–centroid distance = 4.687 (2) Å].

Related literature

For general background, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Peeters et al. (1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]). For related literature, see: Potts (1961[Potts, K. T. (1961). Chem. Rev. 61, 87-127.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N4O2+·Cl

  • Mr = 406.86

  • Orthorhombic, P c a 21

  • a = 17.1336 (15) Å

  • b = 9.8967 (9) Å

  • c = 12.1910 (10) Å

  • V = 2067.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.960

  • 13329 measured reflections

  • 2809 independent reflections

  • 2480 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.02

  • 2809 reflections

  • 272 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1677 Friedel pairs

  • Flack parameter: 0.06 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cli 0.81 (3) 2.58 (3) 3.372 (2) 166 (3)
O2—H2A⋯Clii 0.76 (4) 2.34 (4) 3.090 (2) 171 (5)
N3—H3A⋯Cliii 0.97 (3) 2.14 (3) 3.068 (2) 158 (3)
C18—H18⋯O1 0.93 2.35 3.165 (3) 146
C16—H16ACg2iv 0.96 2.84 3.367 (3) 115
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

1,2,4-Triazole is a basic aromatic heterocycle. Its derivatives, such as fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996), find use as antifungals and can be prepared using various routes including Einhorn-Brunner and Pellizzari reactions (Potts, 1961).

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. Rings A (C1-C6), B (C8-C13), C (N2-N4/C14/C15) and D (C17-C22) are, of course, planar, and the dihedral angles between them are A/B = 66.39 (14)°, A/C = 75.57 (14)°, A/D = 39.96 (13)°, B/C = 53.23 (13)°, B/D = 78.57 (14)° and C/D = 68.11 (13)°. The intramolecular C-H···O hydrogen bond (Table 1) results in the formation of a non-planar ten-membered ring E (O1/N1/N4/C7/C8/C13/C14/C17/C18/H18).

In the crystal structure, intermolecular O-H···Cl and N-H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The C—H···π contact (Table 1) between the methyl group and the phenyl ring and ππ contact between the two phenyl rings Cg2···Cg4i [symmetry code: (i) -x, 2 - y, 1/2 + z, where Cg2 and Cg4 are centroids of the rings (C1-C6) and (C17-C22), respectively] further stabilize the structure, with centroid-centroid distance of 4.687 (2) Å.

Related literature top

For general background, see: Caira et al. (2004); Peeters et al. (1996). For related literature, see: Potts (1961). Cg2 is the centroid of the C1–C6 phenyl ring.

Experimental top

For the preparation of the title compound, N-[2-(hydrazinylcarbonyl)phenyl]- benzamide (0.25 g, 0.98 mmol) and triethyl orthoacetate (1 ml) were refluxed for 2 h. The reaction mixture was cooled to room temperature and 4-aminophenol (0.11 g, 0.98 mmol) was added. Acetic acid (1 ml) was added to the mixture and the contents were refluxed for 1 h. Then, the reaction mixture was added to HCl (8 M) solution. It was crystallized by adding dioxane portion-wise. The crystals were separated by filtration and washed with dioxane (yield; 77%, m.p. 498 K).

Refinement top

H atoms, H2A (for OH), H1 and H3A (for NH), were located in difference syntheses and refined [O-H = 0.76 (4) Å, Uiso(H) = 0.0839 Å2 and N-H = 0.81 (3) and 0.97 (3) Å, Uiso(H) = 0.0628 and 0.0492 Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dotted line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3-(2-Benzamidophenyl)-4-(4-hydroxyphenyl)-5-methyl-4H-1,2,4- triazol-1-ium chloride top
Crystal data top
C22H19N4O2+·ClF(000) = 848
Mr = 406.86Dx = 1.307 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2009 reflections
a = 17.1336 (15) Åθ = 2.1–28.8°
b = 9.8967 (9) ŵ = 0.21 mm1
c = 12.191 (1) ÅT = 296 K
V = 2067.2 (3) Å3Prismatic, black
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2809 independent reflections
Radiation source: fine-focus sealed tube2480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.1°
ω scansh = 2318
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1310
Tmin = 0.950, Tmax = 0.960l = 1612
13329 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2556P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2809 reflectionsΔρmax = 0.20 e Å3
272 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983) with no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C22H19N4O2+·ClV = 2067.2 (3) Å3
Mr = 406.86Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.1336 (15) ŵ = 0.21 mm1
b = 9.8967 (9) ÅT = 296 K
c = 12.191 (1) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2480 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.960Rint = 0.022
13329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.20 e Å3
S = 1.02Δρmin = 0.21 e Å3
2809 reflectionsAbsolute structure: Flack (1983) with no Friedel pairs
272 parametersAbsolute structure parameter: 0.06 (7)
1 restraint
Special details top

Geometry. Bond distances, angles etc have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.18901 (3)0.41678 (5)0.23611 (6)0.0441 (2)
O10.08185 (11)0.8416 (2)0.61956 (15)0.0523 (6)
O20.23156 (16)1.1272 (2)0.1626 (2)0.0698 (9)
N10.02194 (12)0.7017 (2)0.62595 (16)0.0396 (6)
N20.12701 (11)0.54036 (19)0.55257 (17)0.0394 (5)
N30.20680 (12)0.5419 (2)0.55843 (18)0.0410 (6)
N40.17842 (10)0.69261 (19)0.44104 (16)0.0345 (5)
C10.02424 (13)0.8077 (2)0.79409 (19)0.0364 (6)
C20.01415 (15)0.7183 (3)0.8629 (2)0.0451 (8)
C30.02023 (18)0.7468 (4)0.9741 (2)0.0583 (10)
C40.0117 (2)0.8628 (3)1.0166 (3)0.0640 (10)
C50.0506 (2)0.9501 (3)0.9485 (3)0.0648 (10)
C60.05751 (18)0.9231 (3)0.8372 (2)0.0513 (8)
C70.03122 (13)0.7860 (2)0.6732 (2)0.0364 (6)
C80.03057 (13)0.6865 (2)0.51128 (19)0.0357 (6)
C90.10597 (14)0.6966 (3)0.4680 (2)0.0477 (8)
C100.11851 (17)0.6838 (3)0.3569 (3)0.0580 (9)
C110.05706 (19)0.6642 (3)0.2866 (2)0.0590 (10)
C120.01801 (16)0.6538 (3)0.3276 (2)0.0476 (8)
C130.03172 (13)0.6628 (2)0.44022 (18)0.0352 (6)
C140.11081 (12)0.6336 (2)0.48077 (18)0.0340 (6)
C150.23791 (13)0.6310 (2)0.4926 (2)0.0391 (6)
C160.32228 (14)0.6578 (3)0.4792 (3)0.0637 (10)
C170.18724 (12)0.8055 (2)0.36715 (19)0.0348 (6)
C180.16505 (16)0.9329 (2)0.3999 (2)0.0441 (7)
C190.17852 (16)1.0418 (3)0.3320 (2)0.0497 (8)
C200.21503 (14)1.0236 (2)0.2313 (2)0.0456 (7)
C210.2375 (2)0.8955 (3)0.2002 (2)0.0612 (9)
C220.22377 (19)0.7867 (3)0.2674 (2)0.0575 (9)
H10.061 (2)0.684 (3)0.661 (3)0.0628*
H20.035780.639460.834740.0541*
H2A0.220 (2)1.195 (4)0.187 (4)0.0839*
H30.046120.686761.020180.0700*
H3A0.2334 (17)0.480 (3)0.608 (3)0.0492*
H40.006910.882001.090920.0768*
H50.072711.028260.977300.0778*
H60.084440.982610.791880.0616*
H90.147970.712050.514650.0573*
H100.169050.688500.329300.0696*
H110.065830.657940.211490.0710*
H120.059620.640810.279720.0571*
H16A0.331120.753520.477490.0956*
H16B0.350370.618820.539500.0956*
H16C0.340110.618300.411720.0956*
H180.141040.945520.467510.0529*
H190.163121.127830.353680.0596*
H210.262120.882570.133020.0734*
H220.239070.700600.245820.0689*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0360 (2)0.0416 (3)0.0547 (3)0.0066 (2)0.0002 (3)0.0095 (3)
O10.0540 (10)0.0641 (11)0.0389 (9)0.0263 (9)0.0049 (8)0.0019 (9)
O20.104 (2)0.0464 (10)0.0590 (13)0.0042 (12)0.0244 (13)0.0210 (11)
N10.0295 (9)0.0549 (12)0.0343 (10)0.0086 (8)0.0027 (7)0.0004 (9)
N20.0373 (9)0.0381 (9)0.0428 (10)0.0018 (8)0.0011 (8)0.0070 (9)
N30.0360 (9)0.0375 (9)0.0494 (11)0.0008 (8)0.0005 (9)0.0105 (9)
N40.0345 (9)0.0309 (9)0.0382 (10)0.0006 (7)0.0047 (7)0.0034 (7)
C10.0332 (10)0.0399 (11)0.0362 (11)0.0028 (8)0.0017 (9)0.0000 (9)
C20.0452 (13)0.0516 (14)0.0386 (12)0.0102 (10)0.0013 (10)0.0019 (11)
C30.0594 (16)0.075 (2)0.0406 (13)0.0120 (14)0.0071 (12)0.0054 (14)
C40.083 (2)0.0655 (18)0.0435 (14)0.0084 (16)0.0101 (15)0.0096 (14)
C50.094 (2)0.0415 (13)0.0588 (18)0.0032 (14)0.0028 (17)0.0158 (13)
C60.0678 (17)0.0380 (12)0.0481 (14)0.0035 (11)0.0037 (13)0.0006 (10)
C70.0334 (11)0.0384 (11)0.0373 (11)0.0034 (8)0.0004 (9)0.0022 (9)
C80.0325 (10)0.0392 (11)0.0353 (10)0.0063 (8)0.0030 (8)0.0015 (9)
C90.0326 (10)0.0598 (15)0.0508 (14)0.0082 (10)0.0051 (10)0.0026 (12)
C100.0462 (14)0.0737 (18)0.0540 (16)0.0104 (13)0.0210 (13)0.0084 (14)
C110.0653 (18)0.075 (2)0.0367 (13)0.0117 (15)0.0159 (12)0.0048 (13)
C120.0534 (14)0.0549 (14)0.0346 (12)0.0025 (11)0.0022 (10)0.0006 (11)
C130.0366 (10)0.0353 (10)0.0337 (10)0.0039 (8)0.0027 (8)0.0040 (9)
C140.0359 (10)0.0325 (10)0.0336 (10)0.0028 (8)0.0028 (8)0.0009 (8)
C150.0369 (12)0.0323 (9)0.0482 (12)0.0022 (8)0.0032 (10)0.0050 (10)
C160.0338 (13)0.0642 (18)0.093 (2)0.0031 (11)0.0058 (14)0.0277 (18)
C170.0365 (10)0.0309 (10)0.0369 (10)0.0006 (8)0.0046 (9)0.0054 (9)
C180.0518 (13)0.0379 (12)0.0425 (12)0.0099 (10)0.0153 (11)0.0057 (10)
C190.0625 (16)0.0339 (11)0.0527 (14)0.0139 (10)0.0168 (13)0.0069 (11)
C200.0533 (12)0.0394 (11)0.0440 (12)0.0020 (9)0.0076 (12)0.0113 (11)
C210.091 (2)0.0481 (14)0.0446 (14)0.0031 (14)0.0306 (15)0.0036 (11)
C220.086 (2)0.0351 (12)0.0515 (16)0.0072 (12)0.0283 (14)0.0009 (10)
Geometric parameters (Å, º) top
O1—C71.218 (3)C8—C91.399 (3)
O2—C201.354 (3)C8—C131.395 (3)
O2—H2A0.76 (4)C9—C101.377 (4)
N1—C71.363 (3)C9—H90.9300
N1—C81.414 (3)C10—C111.371 (4)
N1—H10.81 (3)C10—H100.9300
N2—N31.369 (3)C11—C121.384 (4)
N2—C141.302 (3)C11—H110.9300
N3—C151.306 (3)C12—C131.396 (3)
N3—H3A0.97 (3)C12—H120.9300
N4—C141.385 (3)C13—C141.471 (3)
N4—C151.344 (3)C15—C161.479 (3)
N4—C171.443 (3)C16—H16A0.9600
C1—C21.385 (3)C16—H16B0.9600
C1—C61.380 (4)C16—H16C0.9600
C1—C71.494 (3)C17—C181.376 (3)
C2—C31.389 (4)C17—C221.380 (3)
C2—H20.9300C18—C191.378 (4)
C3—C41.373 (5)C18—H180.9300
C3—H30.9300C19—C201.390 (3)
C4—C51.371 (5)C19—H190.9300
C4—H40.9300C20—C211.378 (4)
C5—C61.388 (4)C21—C221.373 (4)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
Cl···O2i3.090 (2)C21···O1iii3.291 (4)
Cl···N1ii3.372 (2)C22···C163.338 (4)
Cl···C2ii3.627 (3)C2···H19ix2.9700
Cl···N3iii3.068 (2)C2···H12.61 (4)
Cl···H2ii2.9400C4···H16Av2.9400
Cl···H9ii3.0700C5···H16Av2.8300
Cl···H1ii2.58 (3)C6···H16Av3.0600
Cl···H222.9400C8···H5vii2.9400
Cl···H10iv2.8800C9···H5vii2.7800
Cl···H2Ai2.34 (4)C12···H2ii2.9200
Cl···H3Aiii2.14 (3)C15···H21v3.0200
O1···N43.106 (3)C15···H223.0900
O1···N23.187 (3)C17···H16A2.8600
O1···C183.165 (3)C17···H122.9300
O1···C132.941 (3)H1···H92.3400
O1···C142.710 (3)H1···C22.61 (4)
O1···C21v3.291 (4)H1···Clviii2.58 (3)
O2···Clvi3.090 (2)H1···H22.2100
O1···H62.5200H2···N12.6300
O1···H182.3500H2···H12.2100
O1···H21v2.7100H2···C12viii2.9200
O2···H9vii2.8000H2···Clviii2.9400
N1···Clviii3.372 (2)H2A···H192.3500
N1···N23.141 (3)H2A···Clvi2.34 (4)
N2···C73.281 (3)H3···H11x2.3700
N2···N42.212 (3)H3···N2viii2.6700
N2···O13.187 (3)H3A···H16B2.5700
N2···N13.141 (3)H3A···Clv2.14 (3)
N3···Clv3.068 (2)H5···C9ix2.7800
N3···N42.124 (3)H5···C8ix2.9400
N4···N32.124 (3)H6···O12.5200
N4···O13.106 (3)H9···Clviii3.0700
N1···H22.6300H9···O2ix2.8000
N2···H3ii2.6700H9···H12.3400
N3···H22v2.9200H10···Clxi2.8800
N4···H122.8800H11···H3xii2.3700
C2···Clviii3.627 (3)H12···N42.8800
C3···C16v3.505 (4)H12···C172.9300
C4···C16v3.524 (4)H16A···C4iii2.9400
C7···N23.281 (3)H16A···C172.8600
C7···C143.105 (3)H16A···C5iii2.8300
C12···C173.301 (3)H16A···C6iii3.0600
C13···O12.941 (3)H16B···H3A2.5700
C13···C183.550 (3)H18···O12.3500
C14···O12.710 (3)H19···C2vii2.9700
C14···C73.105 (3)H19···H2A2.3500
C16···C223.338 (4)H21···C15iii3.0200
C16···C4iii3.524 (4)H21···O1iii2.7100
C16···C3iii3.505 (4)H22···C153.0900
C17···C123.301 (3)H22···N3iii2.9200
C18···C133.550 (3)H22···Cl2.9400
C18···O13.165 (3)
C20—O2—H2A112 (3)N4—C17—C18120.0 (2)
C7—N1—C8123.6 (2)C17—C18—C19119.7 (2)
N3—N2—C14103.89 (18)C18—C19—C20120.3 (2)
N2—N3—C15112.5 (2)O2—C20—C19122.9 (2)
C14—N4—C15106.23 (18)C19—C20—C21119.2 (2)
C14—N4—C17129.23 (18)O2—C20—C21117.9 (2)
C15—N4—C17124.32 (18)C20—C21—C22120.6 (2)
C8—N1—H1114 (3)C17—C22—C21119.8 (3)
C7—N1—H1117 (2)C1—C2—H2120.00
N2—N3—H3A119.5 (18)C3—C2—H2120.00
C15—N3—H3A128.0 (18)C2—C3—H3120.00
C2—C1—C6119.6 (2)C4—C3—H3120.00
C2—C1—C7122.9 (2)C3—C4—H4120.00
C6—C1—C7117.5 (2)C5—C4—H4120.00
C1—C2—C3119.8 (3)C4—C5—H5120.00
C2—C3—C4120.6 (3)C6—C5—H5120.00
C3—C4—C5119.5 (3)C1—C6—H6120.00
C4—C5—C6120.8 (3)C5—C6—H6120.00
C1—C6—C5119.8 (3)C8—C9—H9120.00
N1—C7—C1116.83 (19)C10—C9—H9120.00
O1—C7—N1121.7 (2)C9—C10—H10120.00
O1—C7—C1121.5 (2)C11—C10—H10120.00
C9—C8—C13119.0 (2)C10—C11—H11120.00
N1—C8—C13123.5 (2)C12—C11—H11120.00
N1—C8—C9117.5 (2)C11—C12—H12120.00
C8—C9—C10120.6 (2)C13—C12—H12120.00
C9—C10—C11120.5 (3)C15—C16—H16A109.00
C10—C11—C12119.9 (2)C15—C16—H16B109.00
C11—C12—C13120.5 (2)C15—C16—H16C109.00
C12—C13—C14118.2 (2)H16A—C16—H16B110.00
C8—C13—C12119.5 (2)H16A—C16—H16C109.00
C8—C13—C14122.0 (2)H16B—C16—H16C109.00
N2—C14—N4110.84 (18)C17—C18—H18120.00
N2—C14—C13124.17 (19)C19—C18—H18120.00
N4—C14—C13124.76 (19)C18—C19—H19120.00
N3—C15—N4106.5 (2)C20—C19—H19120.00
N4—C15—C16127.5 (2)C20—C21—H21120.00
N3—C15—C16126.0 (2)C22—C21—H21120.00
N4—C17—C22119.5 (2)C17—C22—H22120.00
C18—C17—C22120.3 (2)C21—C22—H22120.00
C8—N1—C7—O19.5 (3)C1—C2—C3—C40.2 (4)
C8—N1—C7—C1170.21 (19)C2—C3—C4—C50.7 (5)
C7—N1—C8—C9130.2 (2)C3—C4—C5—C60.5 (5)
C7—N1—C8—C1349.5 (3)C4—C5—C6—C10.6 (5)
C14—N2—N3—C150.6 (3)N1—C8—C9—C10179.5 (2)
N3—N2—C14—N40.5 (2)C13—C8—C9—C100.2 (4)
N3—N2—C14—C13175.2 (2)N1—C8—C13—C12177.8 (2)
N2—N3—C15—N40.4 (3)N1—C8—C13—C148.3 (3)
N2—N3—C15—C16179.9 (2)C9—C8—C13—C121.9 (3)
C15—N4—C14—N20.2 (2)C9—C8—C13—C14172.0 (2)
C15—N4—C14—C13174.9 (2)C8—C9—C10—C111.6 (4)
C17—N4—C14—N2175.0 (2)C9—C10—C11—C121.6 (5)
C17—N4—C14—C1310.4 (3)C10—C11—C12—C130.2 (4)
C14—N4—C15—N30.1 (2)C11—C12—C13—C81.9 (4)
C14—N4—C15—C16179.8 (2)C11—C12—C13—C14172.2 (2)
C17—N4—C15—N3175.0 (2)C8—C13—C14—N252.0 (3)
C17—N4—C15—C164.7 (4)C8—C13—C14—N4134.1 (2)
C14—N4—C17—C1867.0 (3)C12—C13—C14—N2122.0 (3)
C14—N4—C17—C22118.2 (3)C12—C13—C14—N452.0 (3)
C15—N4—C17—C18106.9 (3)N4—C17—C18—C19175.6 (2)
C15—N4—C17—C2267.8 (3)C22—C17—C18—C190.9 (4)
C6—C1—C2—C31.3 (4)N4—C17—C22—C21175.2 (3)
C7—C1—C2—C3178.2 (2)C18—C17—C22—C210.5 (4)
C2—C1—C6—C51.5 (4)C17—C18—C19—C200.6 (4)
C7—C1—C6—C5178.0 (3)C18—C19—C20—O2178.2 (3)
C2—C1—C7—O1159.0 (2)C18—C19—C20—C210.1 (4)
C2—C1—C7—N121.3 (3)O2—C20—C21—C22178.7 (3)
C6—C1—C7—O121.5 (3)C19—C20—C21—C220.3 (4)
C6—C1—C7—N1158.2 (2)C20—C21—C22—C170.1 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1, z; (v) x+1/2, y, z+1/2; (vi) x, y+1, z; (vii) x, y+2, z1/2; (viii) x, y+1, z+1/2; (ix) x, y+2, z+1/2; (x) x, y, z+1; (xi) x1/2, y+1, z; (xii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Clviii0.81 (3)2.58 (3)3.372 (2)166 (3)
O2—H2A···Clvi0.76 (4)2.34 (4)3.090 (2)171 (5)
N3—H3A···Clv0.97 (3)2.14 (3)3.068 (2)158 (3)
C18—H18···O10.93002.35003.165 (3)146.00
C16—H16A···Cg2iii0.96002.84003.367 (3)115.00
Symmetry codes: (iii) x+1/2, y, z1/2; (v) x+1/2, y, z+1/2; (vi) x, y+1, z; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19N4O2+·Cl
Mr406.86
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)17.1336 (15), 9.8967 (9), 12.191 (1)
V3)2067.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13329, 2809, 2480
Rint0.022
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.02
No. of reflections2809
No. of parameters272
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21
Absolute structureFlack (1983) with no Friedel pairs
Absolute structure parameter0.06 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cli0.81 (3)2.58 (3)3.372 (2)166 (3)
O2—H2A···Clii0.76 (4)2.34 (4)3.090 (2)171 (5)
N3—H3A···Cliii0.97 (3)2.14 (3)3.068 (2)158 (3)
C18—H18···O10.93002.35003.165 (3)146.00
C16—H16A···Cg2iv0.96002.84003.367 (3)115.00
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y, z1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPotts, K. T. (1961). Chem. Rev. 61, 87–127.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds