organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­benzyl­­idene­amino)pyridinium iodide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 11 July 2008; accepted 11 July 2008; online 16 July 2008)

The title compound, C13H13N2+·I, is a derivative of 1-amino­pyridinium iodide. The pyridine and benzene rings are oriented at a dihedral angle of 45.78 (3)°. In the crystal structure, weak inter­molecular C—H⋯I hydrogen bonds link the mol­ecules.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N2+·I

  • Mr = 324.15

  • Orthorhombic, P 21 21 21

  • a = 7.1690 (14) Å

  • b = 12.399 (3) Å

  • c = 15.026 (3) Å

  • V = 1335.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 291 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.536, Tmax = 0.797

  • 1408 measured reflections

  • 1408 independent reflections

  • 1015 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.08

  • 1408 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with no Friedel pairs

  • Flack parameter: 0.05 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Ii 0.93 3.06 3.795 (12) 138
C12—H12⋯Iii 0.93 3.03 3.929 (13) 162
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Some derivatives of 1-aminopyidinium iodide is important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (N1/C9-C13) are, of course, planar and they are oriented at a dihedral angle of A/B = 45.78 (3)°.

In the crystal structure, weak intermolecular C-H···I hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 1-aminopyridinium iodide (22.2 g, 0.10 mol) was dissolved in ethanol (20 ml). 4-Methylbenzaldehyde (32.4 g, 0.1 mol) was added with stirring, and then the mixture was heated at reflux for 5 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold ethanol (2 x 10 ml) to obtain a yellow solid (yield; 38 g, 70%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.
1-(4-Methylbenzylideneamino)pyridinium iodide top
Crystal data top
C13H13N2+·IF(000) = 632
Mr = 324.15Dx = 1.612 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.1690 (14) Åθ = 2.1–25.3°
b = 12.399 (3) ŵ = 2.37 mm1
c = 15.026 (3) ÅT = 291 K
V = 1335.6 (5) Å3Block, yellow
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1015 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.536, Tmax = 0.797l = 018
1408 measured reflections3 standard reflections every 120 min
1408 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.581P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1408 reflectionsΔρmax = 1.10 e Å3
146 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), with no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (10)
Crystal data top
C13H13N2+·IV = 1335.6 (5) Å3
Mr = 324.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1690 (14) ŵ = 2.37 mm1
b = 12.399 (3) ÅT = 291 K
c = 15.026 (3) Å0.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1015 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.536, Tmax = 0.7973 standard reflections every 120 min
1408 measured reflections intensity decay: none
1408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125Δρmax = 1.10 e Å3
S = 1.08Δρmin = 0.54 e Å3
1408 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
146 parametersAbsolute structure parameter: 0.05 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.63765 (9)0.75120 (8)0.67606 (4)0.0632 (3)
N10.1554 (13)0.6174 (7)0.7189 (6)0.049 (2)
N20.1485 (13)0.6612 (8)0.8065 (6)0.051 (2)
C10.241 (2)1.0008 (11)1.1391 (8)0.068 (4)
H1A0.36851.01691.15410.102*
H1B0.18540.95961.18620.102*
H1C0.17351.06691.13130.102*
C20.2358 (15)0.9358 (10)1.0529 (7)0.053 (3)
C30.1465 (17)0.8349 (9)1.0519 (7)0.055 (3)
H30.09640.80691.10410.065*
C40.1329 (14)0.7771 (8)0.9731 (7)0.048 (3)
H40.07460.71010.97270.058*
C50.2057 (14)0.8187 (9)0.8955 (7)0.044 (3)
C60.2865 (17)0.9199 (8)0.8960 (8)0.055 (3)
H60.33120.94900.84310.066*
C70.3023 (16)0.9792 (10)0.9746 (8)0.059 (3)
H70.35701.04720.97420.071*
C80.2037 (13)0.7578 (10)0.8115 (6)0.051 (3)
H80.24470.79180.75990.062*
C90.2109 (17)0.5139 (9)0.7163 (9)0.061 (3)
H90.23610.47690.76880.073*
C100.230 (2)0.4624 (11)0.6341 (12)0.081 (5)
H100.27150.39140.63050.097*
C110.1874 (17)0.5193 (13)0.5595 (9)0.072 (4)
H110.19530.48590.50420.087*
C120.1332 (19)0.6237 (12)0.5642 (8)0.070 (4)
H120.11040.66270.51250.084*
C130.1126 (18)0.6708 (11)0.6443 (8)0.065 (3)
H130.06810.74110.64780.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (10)0.073 (8)0.054 (7)0.006 (8)0.006 (8)0.019 (7)
C20.046 (7)0.058 (8)0.055 (7)0.013 (6)0.012 (6)0.001 (6)
C30.068 (8)0.046 (6)0.050 (7)0.009 (7)0.016 (6)0.011 (5)
C40.052 (6)0.044 (7)0.048 (5)0.002 (5)0.007 (5)0.001 (5)
C50.033 (5)0.060 (7)0.038 (6)0.007 (5)0.006 (5)0.006 (5)
C60.059 (7)0.043 (6)0.062 (7)0.007 (6)0.020 (6)0.001 (6)
C70.054 (7)0.064 (8)0.059 (7)0.007 (6)0.002 (7)0.000 (7)
C80.039 (4)0.073 (8)0.042 (5)0.013 (8)0.001 (4)0.011 (8)
C90.068 (8)0.055 (8)0.061 (7)0.011 (7)0.013 (7)0.007 (6)
C100.070 (10)0.064 (9)0.108 (12)0.016 (9)0.011 (10)0.026 (10)
C110.046 (8)0.117 (13)0.053 (8)0.017 (9)0.015 (6)0.025 (9)
C120.072 (9)0.094 (11)0.044 (7)0.016 (9)0.018 (7)0.001 (7)
C130.064 (8)0.075 (8)0.054 (7)0.010 (8)0.007 (7)0.009 (7)
I0.0631 (5)0.0721 (5)0.0544 (4)0.0063 (8)0.0064 (4)0.0020 (6)
N10.044 (5)0.050 (5)0.053 (5)0.000 (5)0.006 (5)0.001 (5)
N20.049 (5)0.054 (5)0.049 (5)0.012 (5)0.021 (5)0.005 (4)
Geometric parameters (Å, º) top
C1—C21.526 (15)C8—N21.264 (13)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—N11.344 (13)
C1—H1C0.9600C9—C101.398 (17)
C2—C71.379 (15)C9—H90.9300
C2—C31.405 (16)C10—C111.360 (19)
C3—C41.387 (15)C10—H100.9300
C3—H30.9300C11—C121.353 (17)
C4—C51.379 (13)C11—H110.9300
C4—H40.9300C12—C131.345 (16)
C5—C61.382 (14)C12—H120.9300
C5—C81.471 (13)C13—N11.338 (14)
C6—C71.396 (15)C13—H130.9300
C6—H60.9300N1—N21.425 (11)
C7—H70.9300
C2—C1—H1A109.5C6—C7—H7120.4
C2—C1—H1B109.5N2—C8—C5122.7 (9)
H1A—C1—H1B109.5N2—C8—H8118.6
C2—C1—H1C109.5C5—C8—H8118.6
H1A—C1—H1C109.5N1—C9—C10119.4 (12)
H1B—C1—H1C109.5N1—C9—H9120.3
C7—C2—C3119.7 (11)C10—C9—H9120.3
C7—C2—C1120.6 (12)C11—C10—C9118.0 (12)
C3—C2—C1119.4 (12)C11—C10—H10121.0
C4—C3—C2120.1 (10)C9—C10—H10121.0
C4—C3—H3120.0C12—C11—C10121.2 (13)
C2—C3—H3120.0C12—C11—H11119.4
C5—C4—C3120.2 (10)C10—C11—H11119.4
C5—C4—H4119.9C13—C12—C11119.6 (13)
C3—C4—H4119.9C13—C12—H12120.2
C4—C5—C6119.6 (10)C11—C12—H12120.2
C4—C5—C8122.0 (10)N1—C13—C12120.6 (12)
C6—C5—C8118.4 (10)N1—C13—H13119.7
C5—C6—C7121.1 (11)C12—C13—H13119.7
C5—C6—H6119.4C13—N1—C9121.1 (11)
C7—C6—H6119.4C13—N1—N2125.3 (9)
C2—C7—C6119.2 (11)C9—N1—N2113.6 (10)
C2—C7—H7120.4C8—N2—N1113.9 (9)
C7—C2—C3—C42.9 (16)N1—C9—C10—C112 (2)
C1—C2—C3—C4177.1 (11)C9—C10—C11—C122 (2)
C2—C3—C4—C50.5 (17)C10—C11—C12—C133 (2)
C3—C4—C5—C62.2 (16)C11—C12—C13—N14 (2)
C3—C4—C5—C8176.6 (10)C12—C13—N1—C93.4 (19)
C4—C5—C6—C72.5 (17)C12—C13—N1—N2176.5 (11)
C8—C5—C6—C7176.3 (10)C10—C9—N1—C132.3 (18)
C3—C2—C7—C62.6 (17)C10—C9—N1—N2177.6 (11)
C1—C2—C7—C6176.7 (12)C5—C8—N2—N1179.2 (9)
C5—C6—C7—C20.0 (18)C13—N1—N2—C838.8 (15)
C4—C5—C8—N25.4 (16)C9—N1—N2—C8141.1 (10)
C6—C5—C8—N2173.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Ii0.933.063.795 (12)138
C12—H12···Iii0.933.033.929 (13)162
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H13N2+·I
Mr324.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)7.1690 (14), 12.399 (3), 15.026 (3)
V3)1335.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.536, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
1408, 1408, 1015
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.08
No. of reflections1408
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.54
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0.05 (10)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Ii0.933.063.795 (12)138.00
C12—H12···Iii0.933.033.929 (13)162.00
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds