organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,3Z)-Quinoxaline-2,3(1H,4H)-dione dioxime

aDepartment of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: alikakanejadifard@yahoo.com

(Received 11 July 2008; accepted 11 July 2008; online 16 July 2008)

The asymmetric unit of the title compound, C8H8N4O2, contains one half-mol­ecule; a twofold rotation axis bisects the molecule. An intra­molecular N—H⋯O hydrogen bond results in the formation of a five-membered ring, which displays an envelope conformation. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Kakanejadifard, Niknam & Zabardasti (2007[Kakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem. 60, 677-681.]); Kakanejadifard, Saniei et al. (2007[Kakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem. 44, 717-718.]); Kakanejadifard & Niknam (2006[Kakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem. 80, 1645-1649.]); For general background, see: Jones et al. (1961[Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62-66.]); Schrauzer & Kohnle (1964[Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056-3063.]); Yari et al. (2006[Yari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167-173.]); Hashemi et al. (2006[Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci. 21, 1297-1301.]); Ghiasvand et al. (2004[Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287-292.], 2005[Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781-785.]); Kakanejadifard, Niknam, Ranjbar et al. (2007[Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753-2756.]); Gok & Kantekin (1997[Gok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413-2420.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O2

  • Mr = 192.18

  • Orthorhombic, F d d d

  • a = 9.831 (2) Å

  • b = 13.609 (3) Å

  • c = 24.344 (5) Å

  • V = 3256.9 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 7925 measured reflections

  • 983 independent reflections

  • 708 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.118

  • S = 1.01

  • 983 reflections

  • 67 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.852 (13) 1.971 (10) 2.763 (2) 154
N2—H2A⋯O1 0.86 2.25 2.566 (3) 102
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported the syntheses and chemical behaviours of some vic-dioximes. In our investigations, the reactions of amines with dichloro- glyoxime or cyanogendi-N-oxide resulted in various symmetrically substituted diaminoglyoxime derivatives, in which some of them were quite suitable to act, as donor species, towards some transition metal ions (Kakanejadifard, Niknam & Zabardasti, 2007; Kakanejadifard, Saniei et al., 2007; Kakanejadifard & Niknam, 2006). Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones et al., 1961; Schrauzer & Kohnle, 1964;Yari et al., 2006; Hashemi et al., 2006; Ghiasvand et al., 2004, 2005; Kakanejadifard, Niknam, Ranjbar et al., 2007). vic-Dioximes, containing mildly acidic hydroxyl groups and slightly basic nitrogen atoms, are amphoteric and their transition metal complexes have been widely investigated as analytical reagents (Gok & Kantekin, 1997). We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one-half molecule (Fig. 1). The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring: (O1/N1/N2/C1/H2A), having envelope conformation, with H2A atom displaced by -0.132 Å from the plane of the other ring atoms.

In the crystal structure, intermolecular O-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Kakanejadifard, Niknam & Zabardasti (2007); Kakanejadifard, Saniei et al. (2007); Kakanejadifard & Niknam (2006); For general background, see: Jones et al. (1961); Schrauzer & Kohnle (1964); Yari et al. (2006); Hashemi et al. (2006); Ghiasvand et al. (2004, 2005); Kakanejadifard, Niknam, Ranjbar et al. (2007); Gok & Kantekin (1997).

Experimental top

For the preparation of the title compound, a solution of Na2CO3 (0.2 g, 1.9 mmol) in MeCN (30 ml) was added to a magnetically stirred solution of dicholoroglyoxime (1.57 g, 10 mmol) in MeCN (20 ml) and a solution of 1,2-phenylendiamine (1.08 g, 10 mmol) at 278 K. After 2 h stirring at room temperature, the mixture was filtered and the brown precipitate was washed with cold MeCN. It was recrystallized from EtOH (70% aq) in one week (yield; 93.0%, m.p. 512 K).

Refinement top

H1 atom (for OH) was located in difference syntheses and refined [O-H = 0.852 (13) Å, Uiso(H) = 0.039 Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 5/4 - x, 1/4 - y, z].
[Figure 2] Fig. 2. A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.
(2Z,3Z)-Quinoxaline-2,3(1H,4H)-dione dioxime top
Crystal data top
C8H8N4O2F(000) = 1600
Mr = 192.18Dx = 1.568 Mg m3
Orthorhombic, FdddMo Kα radiation, λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 744 reflections
a = 9.831 (2) Åθ = 3–30°
b = 13.609 (3) ŵ = 0.12 mm1
c = 24.344 (5) ÅT = 120 K
V = 3256.9 (11) Å3Prism, light-brown
Z = 160.4 × 0.2 × 0.2 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
708 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 28.0°, θmin = 2.7°
ϕ and ω scansh = 1212
7925 measured reflectionsk = 1717
983 independent reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.005P)2 + 25P]
where P = (Fo2 + 2Fc2)/3
983 reflections(Δ/σ)max < 0.001
67 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C8H8N4O2V = 3256.9 (11) Å3
Mr = 192.18Z = 16
Orthorhombic, FdddMo Kα radiation
a = 9.831 (2) ŵ = 0.12 mm1
b = 13.609 (3) ÅT = 120 K
c = 24.344 (5) Å0.4 × 0.2 × 0.2 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
708 reflections with I > 2σ(I)
7925 measured reflectionsRint = 0.065
983 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.005P)2 + 25P]
where P = (Fo2 + 2Fc2)/3
983 reflectionsΔρmax = 0.43 e Å3
67 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47468 (17)0.04564 (12)0.43944 (6)0.0324 (4)
H10.454 (3)0.0611 (18)0.4723 (4)0.039*
N10.54273 (19)0.04548 (13)0.44726 (7)0.0261 (4)
N20.5691 (2)0.03307 (14)0.35156 (7)0.0308 (5)
H2A0.53850.02610.35130.037*
C10.5867 (2)0.07818 (15)0.40084 (8)0.0242 (4)
C20.5981 (2)0.07776 (16)0.30119 (8)0.0268 (5)
C30.5745 (2)0.03025 (19)0.25164 (9)0.0358 (6)
H3A0.54130.03370.25140.043*
C40.6000 (3)0.0776 (2)0.20291 (9)0.0412 (6)
H4A0.58350.04570.16980.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (10)0.0304 (8)0.0244 (7)0.0098 (7)0.0009 (7)0.0025 (7)
N10.0314 (9)0.0243 (9)0.0226 (8)0.0053 (8)0.0002 (7)0.0004 (7)
N20.0447 (11)0.0279 (9)0.0198 (8)0.0126 (8)0.0022 (8)0.0015 (7)
C10.0282 (11)0.0261 (10)0.0184 (9)0.0014 (9)0.0009 (8)0.0002 (8)
C20.0282 (11)0.0334 (11)0.0187 (9)0.0055 (9)0.0016 (8)0.0002 (8)
C30.0422 (13)0.0422 (13)0.0230 (10)0.0154 (11)0.0041 (10)0.0059 (10)
C40.0440 (14)0.0596 (17)0.0199 (10)0.0188 (13)0.0004 (10)0.0054 (10)
Geometric parameters (Å, º) top
O1—H10.852 (13)C2—C2i1.390 (4)
N1—C11.289 (3)C2—C31.388 (3)
N1—O11.422 (2)C3—C41.373 (3)
N2—C11.359 (2)C3—H3A0.9300
N2—C21.398 (3)C4—C4i1.380 (5)
N2—H2A0.8600C4—H4A0.9300
C1—C1i1.481 (4)
N1—O1—H1101.8 (17)C3—C2—N2121.7 (2)
C1—N1—O1109.96 (16)C2i—C2—N2118.68 (11)
C1—N2—C2123.50 (18)C4—C3—C2120.1 (2)
C1—N2—H2A118.3C4—C3—H3A120.0
C2—N2—H2A118.3C2—C3—H3A120.0
N1—C1—N2125.13 (19)C3—C4—C4i120.25 (14)
N1—C1—C1i117.89 (12)C3—C4—H4A119.9
N2—C1—C1i116.98 (12)C4i—C4—H4A119.9
C3—C2—C2i119.62 (13)
C1—N2—C2—C3177.8 (2)C2—N2—C1—C1i11.4 (4)
C1—N2—C2—C2i2.2 (4)C2i—C2—C3—C42.1 (4)
O1—N1—C1—N20.8 (3)N2—C2—C3—C4177.9 (2)
O1—N1—C1—C1i178.7 (2)C2—C3—C4—C4i0.4 (5)
C2—N2—C1—N1169.1 (2)
Symmetry code: (i) x+5/4, y+1/4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.85 (1)1.97 (1)2.763 (2)154
N2—H2A···O10.862.252.566 (3)102
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H8N4O2
Mr192.18
Crystal system, space groupOrthorhombic, Fddd
Temperature (K)120
a, b, c (Å)9.831 (2), 13.609 (3), 24.344 (5)
V3)3256.9 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7925, 983, 708
Rint0.065
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.118, 1.01
No. of reflections983
No. of parameters67
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.005P)2 + 25P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.43, 0.25

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.852 (13)1.971 (10)2.763 (2)154
N2—H2A···O10.862.252.566 (3)102
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the Research Grant Council of Lorestan University for financial support.

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781–785.  CAS Google Scholar
First citationGok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413–2420.  CrossRef CAS Web of Science Google Scholar
First citationHashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci. 21, 1297–1301.  Web of Science CrossRef Google Scholar
First citationJones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62–66.  CrossRef CAS Google Scholar
First citationKakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem. 80, 1645–1649.  CAS Google Scholar
First citationKakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753–2756.  Web of Science CrossRef CAS Google Scholar
First citationKakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem. 60, 677–681.  Web of Science CrossRef CAS Google Scholar
First citationKakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem. 44, 717–718.  CrossRef CAS Google Scholar
First citationSchrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056–3063.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167–173.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds