organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Di­methyl-9-phenyl-3,4-di­hydro­acridin-1(2H)-one

aDepartment of Chemistry, Islamic Azad University, Dorood Branch, Dorood 688173551, Iran
*Correspondence e-mail: a_bazgir@yahoo.com

(Received 11 July 2008; accepted 15 July 2008; online 19 July 2008)

In the mol­ecule of the title compound, C21H19NO, the terminal saturated six-membered ring of the dihydro­acridine unit adopts an envelope conformation, while the other two fused rings are nearly coplanar, with a dihedral angle of 2.61 (3)°. The coplanar ring system is oriented with respect to the phenyl ring at a dihedral angle of 74.58 (3)°. In the crystal structure, there is a C—H⋯π contact between the central ring of the dihydro­acridine system and the phenyl ring and a ππ contact between the two central rings [centroid–centroid distance = 3.809 (1) Å].

Related literature

For general background, see: Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Doube et al. (1998[Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255-1260.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO

  • Mr = 301.37

  • Monoclinic, C 2/c

  • a = 16.341 (3) Å

  • b = 11.3889 (18) Å

  • c = 18.772 (4) Å

  • β = 110.386 (14)°

  • V = 3274.8 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.33 × 0.22 × 0.1 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.980, Tmax = 0.990

  • 11268 measured reflections

  • 3882 independent reflections

  • 3032 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.143

  • S = 1.10

  • 3882 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/C8/C15/C20/C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.93 3.20 3.814 (3) 126
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, quinolines and their derivatives have received considerable attention, due to their wide range of therapeutic and biological properties. They have emerged as antimalarial, antiasthmatic, anti-inflamatory, antibacterial, anti- hypertensive and tyrosine kinase PDGF-RTK inhibiting agents. Moreover, poly- quinolines are found to undergo hierarchical self-assembly into a variety of nano and meso structures with enhanced electronic and photonic functions (Kalluraya & Sreenivasa, 1998; Doube et al., 1998; Maguire et al., 1994). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1/C2/C5-C7/C21) adopts envelope conformation, with C2 atom displaced by -0.683 (3) Å from the plane of the other ring atoms. Rings B (N1/C7/C8/C15/C20/C21), C (C15-C20) and D (C9-C14) are, of course, planar and they are oriented at dihedral angles of B/C = 2.61 (3)°, B/D = 74.17 (3)° and C/D = 75.01 (3)°. So, rings B and C are nearly coplanar. The coplanar ring system is oriented with respect to the phenyl ring D at a dihedral angle of 74.58 (3)°.

In the crystal structure, a C—H···π contact (Table 1) between rings B and D and a ππ contact between the symmetry related B rings Cg1···Cg1i [symmetry code: (i) 1/2 - x, 3/2 - y, - z, where Cg1 is the centroid of ring B] may stabilize the structure, with centroid-centroid distance of 3.809 (1) Å.

Related literature top

For general background, see: Kalluraya & Sreenivasa (1998); Doube et al. (1998); Maguire et al. (1994). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the N1/C7/C8/C15/C20/C21 ring.

Experimental top

For the preparation of the title compound, a mixture of 5,5-dimethylcyclohexane -1,3-dione (1 mmol), (2-aminophenyl)(phenyl)methanone (1 mmol) and benzyl tri- ethyl ammonium chloride (0.1 g) in water (5 ml) was stirred at reflux for 5 h. After completion of reaction (monitored by TLC) the reaction mixture was filtered and the precipitate washed with water (15 ml), and then recrystallized from EtOH/water (1:2) to afford the pure product (yield; 0.195 g, 65%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3,3-Dimethyl-9-phenyl-3,4-dihydroacridin-1(2H)-one top
Crystal data top
C21H19NOF(000) = 1280
Mr = 301.37Dx = 1.222 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1575 reflections
a = 16.341 (3) Åθ = 2.2–28.0°
b = 11.3889 (18) ŵ = 0.08 mm1
c = 18.772 (4) ÅT = 298 K
β = 110.386 (14)°Block, colorless
V = 3274.8 (10) Å30.33 × 0.22 × 0.1 mm
Z = 8
Data collection top
Stoe IPDSII
diffractometer
3032 reflections with I > 2σ(I)
rotation method scansRint = 0.044
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005)
θmax = 28.0°, θmin = 2.2°
Tmin = 0.980, Tmax = 0.990h = 2121
11268 measured reflectionsk = 1415
3882 independent reflectionsl = 2417
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0491P)2 + 1.8747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.24 e Å3
3882 reflectionsΔρmin = 0.26 e Å3
208 parameters
Crystal data top
C21H19NOV = 3274.8 (10) Å3
Mr = 301.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.341 (3) ŵ = 0.08 mm1
b = 11.3889 (18) ÅT = 298 K
c = 18.772 (4) Å0.33 × 0.22 × 0.1 mm
β = 110.386 (14)°
Data collection top
Stoe IPDSII
diffractometer
3882 independent reflections
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005)
3032 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.044
11268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.10Δρmax = 0.24 e Å3
3882 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81274 (12)0.40574 (13)0.19111 (8)0.0814 (5)
N10.88041 (9)0.16743 (13)0.03136 (8)0.0490 (3)
C10.87761 (13)0.08450 (15)0.08673 (11)0.0533 (4)
H1A0.82060.0480.10790.064*
H1B0.91690.02770.05350.064*
C20.91044 (11)0.11403 (15)0.15138 (10)0.0494 (4)
C30.90577 (17)0.00459 (19)0.20010 (14)0.0736 (6)
H3A0.92390.02440.24210.088*
H3B0.84690.02420.2190.088*
H3C0.94360.0550.16980.088*
C41.00438 (13)0.1581 (2)0.12016 (13)0.0681 (6)
H4A1.00740.22670.08970.082*
H4B1.02360.17730.16160.082*
H4C1.04130.09790.08960.082*
C50.85007 (13)0.20855 (17)0.19917 (10)0.0570 (4)
H5A0.87280.2340.2380.068*
H5B0.79330.17360.22490.068*
C60.83780 (12)0.31480 (15)0.15688 (9)0.0493 (4)
C70.85331 (10)0.30320 (13)0.07363 (9)0.0405 (3)
C80.84960 (9)0.39807 (14)0.02880 (9)0.0411 (3)
C90.83425 (10)0.52170 (14)0.05688 (9)0.0423 (3)
C100.90001 (12)0.58667 (17)0.06880 (11)0.0550 (4)
H100.95350.55170.06230.066*
C110.88648 (13)0.70308 (17)0.09023 (12)0.0635 (5)
H110.93120.74650.09730.076*
C120.80695 (14)0.75516 (16)0.10110 (11)0.0626 (5)
H120.79770.83330.11620.075*
C130.74135 (13)0.69126 (16)0.08949 (12)0.0595 (5)
H130.68770.72640.09680.071*
C140.75471 (11)0.57519 (15)0.06710 (10)0.0496 (4)
H140.71020.53270.05890.06*
C150.86231 (10)0.37692 (15)0.04941 (9)0.0436 (4)
C160.86349 (12)0.46714 (19)0.10169 (11)0.0584 (5)
H160.85660.54490.08560.07*
C170.87457 (14)0.4412 (2)0.17538 (11)0.0720 (6)
H170.87530.50130.20910.086*
C180.88480 (14)0.3247 (2)0.20068 (11)0.0746 (6)
H180.89140.3080.25090.09*
C190.88514 (13)0.2360 (2)0.15250 (11)0.0640 (5)
H190.89190.1590.170.077*
C200.87526 (10)0.25947 (16)0.07591 (9)0.0464 (4)
C210.87064 (10)0.18891 (14)0.04023 (9)0.0429 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1371 (15)0.0625 (8)0.0472 (7)0.0205 (9)0.0353 (8)0.0142 (7)
N10.0525 (8)0.0514 (8)0.0475 (8)0.0020 (6)0.0228 (6)0.0132 (6)
C10.0635 (11)0.0421 (8)0.0588 (10)0.0016 (8)0.0269 (9)0.0013 (8)
C20.0542 (9)0.0484 (9)0.0504 (9)0.0015 (8)0.0241 (8)0.0063 (7)
C30.0902 (15)0.0633 (12)0.0775 (14)0.0042 (11)0.0420 (12)0.0184 (11)
C40.0554 (11)0.0764 (13)0.0784 (14)0.0041 (10)0.0310 (10)0.0112 (11)
C50.0679 (11)0.0613 (11)0.0427 (9)0.0011 (9)0.0205 (8)0.0042 (8)
C60.0590 (10)0.0507 (9)0.0398 (8)0.0030 (8)0.0192 (7)0.0076 (7)
C70.0420 (8)0.0436 (8)0.0388 (8)0.0000 (6)0.0177 (6)0.0050 (6)
C80.0386 (7)0.0455 (8)0.0421 (8)0.0000 (6)0.0178 (6)0.0053 (7)
C90.0469 (8)0.0433 (8)0.0384 (8)0.0016 (7)0.0170 (6)0.0009 (6)
C100.0464 (9)0.0595 (11)0.0592 (11)0.0024 (8)0.0187 (8)0.0118 (9)
C110.0650 (12)0.0596 (11)0.0626 (12)0.0196 (9)0.0179 (9)0.0093 (9)
C120.0777 (13)0.0381 (9)0.0645 (12)0.0062 (9)0.0152 (10)0.0042 (8)
C130.0607 (11)0.0460 (9)0.0703 (12)0.0065 (8)0.0211 (9)0.0007 (9)
C140.0509 (9)0.0445 (9)0.0579 (10)0.0011 (7)0.0245 (8)0.0008 (8)
C150.0397 (8)0.0541 (9)0.0403 (8)0.0025 (7)0.0181 (6)0.0028 (7)
C160.0604 (11)0.0676 (12)0.0499 (10)0.0043 (9)0.0225 (8)0.0059 (9)
C170.0737 (13)0.0998 (17)0.0458 (10)0.0081 (12)0.0249 (9)0.0129 (11)
C180.0731 (13)0.1169 (19)0.0388 (9)0.0139 (13)0.0258 (9)0.0106 (11)
C190.0648 (11)0.0863 (14)0.0458 (10)0.0096 (10)0.0253 (8)0.0206 (10)
C200.0419 (8)0.0604 (10)0.0409 (8)0.0014 (7)0.0195 (6)0.0103 (7)
C210.0426 (8)0.0447 (8)0.0450 (8)0.0009 (6)0.0198 (7)0.0064 (7)
Geometric parameters (Å, º) top
C1—C211.503 (2)C9—C141.387 (2)
C1—C21.526 (2)C10—C111.381 (3)
C1—H1A0.97C10—H100.93
C1—H1B0.97C11—C121.377 (3)
C2—C51.523 (3)C11—H110.93
C2—C41.525 (3)C12—C131.375 (3)
C2—C31.532 (3)C12—H120.93
C3—H3A0.96C13—C141.381 (2)
C3—H3B0.96C13—H130.93
C3—H3C0.96C14—H140.93
C4—H4A0.96C15—C161.416 (2)
C4—H4B0.96C15—C201.417 (2)
C4—H4C0.96C16—C171.364 (3)
C5—C61.499 (2)C16—H160.93
C5—H5A0.97C17—C181.399 (3)
C5—H5B0.97C17—H170.93
C6—O11.212 (2)C18—C191.357 (3)
C6—C71.499 (2)C18—H180.93
C7—C81.384 (2)C19—C201.415 (2)
C7—C211.430 (2)C19—H190.93
C8—C151.430 (2)C20—N11.362 (2)
C8—C91.494 (2)C21—N11.320 (2)
C9—C101.386 (2)
C21—C1—C2113.98 (14)C10—C9—C8121.06 (15)
C21—C1—H1A108.8C14—C9—C8119.80 (14)
C2—C1—H1A108.8C11—C10—C9120.35 (18)
C21—C1—H1B108.8C11—C10—H10119.8
C2—C1—H1B108.8C9—C10—H10119.8
H1A—C1—H1B107.7C12—C11—C10120.24 (17)
C5—C2—C4110.65 (16)C12—C11—H11119.9
C5—C2—C1106.81 (14)C10—C11—H11119.9
C4—C2—C1110.65 (16)C13—C12—C11119.75 (17)
C5—C2—C3109.63 (16)C13—C12—H12120.1
C4—C2—C3109.35 (16)C11—C12—H12120.1
C1—C2—C3109.72 (15)C12—C13—C14120.38 (18)
C2—C3—H3A109.5C12—C13—H13119.8
C2—C3—H3B109.5C14—C13—H13119.8
H3A—C3—H3B109.5C13—C14—C9120.24 (16)
C2—C3—H3C109.5C13—C14—H14119.9
H3A—C3—H3C109.5C9—C14—H14119.9
H3B—C3—H3C109.5C16—C15—C20118.51 (16)
C2—C4—H4A109.5C16—C15—C8123.45 (16)
C2—C4—H4B109.5C20—C15—C8118.04 (15)
H4A—C4—H4B109.5C17—C16—C15120.7 (2)
C2—C4—H4C109.5C17—C16—H16119.7
H4A—C4—H4C109.5C15—C16—H16119.7
H4B—C4—H4C109.5C16—C17—C18120.5 (2)
C6—C5—C2115.93 (15)C16—C17—H17119.7
C6—C5—H5A108.3C18—C17—H17119.7
C2—C5—H5A108.3C19—C18—C17120.46 (19)
C6—C5—H5B108.3C19—C18—H18119.8
C2—C5—H5B108.3C17—C18—H18119.8
H5A—C5—H5B107.4C18—C19—C20120.8 (2)
O1—C6—C5119.46 (16)C18—C19—H19119.6
O1—C6—C7122.07 (16)C20—C19—H19119.6
C5—C6—C7118.41 (15)N1—C20—C19117.99 (17)
C8—C7—C21119.22 (14)N1—C20—C15123.00 (14)
C8—C7—C6122.53 (14)C19—C20—C15119.00 (17)
C21—C7—C6118.23 (14)N1—C21—C7123.40 (15)
C7—C8—C15118.13 (14)N1—C21—C1115.98 (14)
C7—C8—C9123.98 (14)C7—C21—C1120.62 (14)
C15—C8—C9117.88 (14)C21—N1—C20118.11 (14)
C10—C9—C14119.03 (15)
C21—C1—C2—C555.2 (2)C8—C9—C14—C13176.85 (16)
C21—C1—C2—C465.3 (2)C7—C8—C15—C16177.41 (15)
C21—C1—C2—C3173.95 (17)C9—C8—C15—C161.8 (2)
C4—C2—C5—C667.6 (2)C7—C8—C15—C201.9 (2)
C1—C2—C5—C652.9 (2)C9—C8—C15—C20178.84 (14)
C3—C2—C5—C6171.73 (16)C20—C15—C16—C171.7 (3)
C2—C5—C6—O1158.93 (18)C8—C15—C16—C17178.98 (17)
C2—C5—C6—C723.8 (2)C15—C16—C17—C180.1 (3)
O1—C6—C7—C87.4 (3)C16—C17—C18—C191.0 (3)
C5—C6—C7—C8175.35 (16)C17—C18—C19—C200.1 (3)
O1—C6—C7—C21171.17 (18)C18—C19—C20—N1176.85 (18)
C5—C6—C7—C216.1 (2)C18—C19—C20—C151.9 (3)
C21—C7—C8—C150.8 (2)C16—C15—C20—N1176.02 (16)
C6—C7—C8—C15177.79 (14)C8—C15—C20—N13.4 (2)
C21—C7—C8—C9178.40 (14)C16—C15—C20—C192.7 (2)
C6—C7—C8—C93.0 (2)C8—C15—C20—C19177.96 (15)
C7—C8—C9—C1076.1 (2)C8—C7—C21—N12.5 (2)
C15—C8—C9—C10103.06 (18)C6—C7—C21—N1176.10 (15)
C7—C8—C9—C14107.68 (19)C8—C7—C21—C1178.28 (15)
C15—C8—C9—C1473.2 (2)C6—C7—C21—C13.1 (2)
C14—C9—C10—C110.3 (3)C2—C1—C21—N1151.45 (15)
C8—C9—C10—C11175.97 (17)C2—C1—C21—C729.3 (2)
C9—C10—C11—C121.0 (3)C7—C21—N1—C201.2 (2)
C10—C11—C12—C130.9 (3)C1—C21—N1—C20179.53 (15)
C11—C12—C13—C140.1 (3)C19—C20—N1—C21179.55 (15)
C12—C13—C14—C90.7 (3)C15—C20—N1—C211.8 (2)
C10—C9—C14—C130.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.933.203.814 (3)126
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC21H19NO
Mr301.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.341 (3), 11.3889 (18), 18.772 (4)
β (°) 110.386 (14)
V3)3274.8 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.22 × 0.1
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11268, 3882, 3032
Rint0.044
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.143, 1.10
No. of reflections3882
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.933.1973.814 (3)125.65
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

I am grateful to the Islamic Azad University, Dorood Branch, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDoube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255–1260.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds