organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,11-Bis(4-methyl­phen­yl)-2,4,8,10-tetra­aza­spiro­[5.5]undecane-1,3,5,9-tetra­one

aDepartment of Chemistry, Islamic Azad University, Dorood Branch, Dorood 688173551, Iran, and bDepartment of Chemistry, Faculty of Science, Karaj Branch, Karaj, Iran
*Correspondence e-mail: a_bazgir@yahoo.com

(Received 11 July 2008; accepted 15 July 2008; online 19 July 2008)

In the mol­ecule of the title compound, C21H20N4O4, the two methyl­phenyl rings are oriented at a dihedral angle of 59.32 (4)°. The other two rings have flattened-boat conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. There are C—H⋯π contacts between a methyl­phenyl ring and methyl and methine groups.

Related literature

For general background, see: Pradhan et al. (2006[Pradhan, R., Patra, M., Behera, A. K., Mishra, B. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.]); Useglio et al. (2006[Useglio, M., Castellano, P. M., Operto, M. A., Torres, R. & Kaufmen, T. S. (2006). Bioorg. Med. Chem. Lett. 16, 5097-5101.]); Kazmierski et al. (2006[Kazmierski, W. M., Furfine, E., Spaltenstein, A. & Wright, L. L. (2006). Bioorg. Med. Chem. Lett. 16, 5226-5230.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N4O4

  • Mr = 392.41

  • Monoclinic, P 21 /n

  • a = 8.852 (2) Å

  • b = 12.538 (3) Å

  • c = 17.259 (4) Å

  • β = 104.483 (18)°

  • V = 1854.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 298 (2) K

  • 0.15 × 0.11 × 0.1 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.979, Tmax = 0.991

  • 17766 measured reflections

  • 4456 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.148

  • S = 1.13

  • 4456 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C11–C14/C16/C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.80 (5) 2.39 (5) 3.004 (3) 135 (4)
N2—H2B⋯O3ii 0.77 (4) 2.32 (3) 3.065 (4) 164 (3)
N3—H3⋯O1i 0.82 (4) 2.54 (4) 3.181 (3) 136 (3)
N4—H4D⋯O1iii 0.87 (4) 1.92 (4) 2.785 (3) 174 (3)
C4—H4BCg4iv 0.96 3.02 3.721 (3) 131
C10—H10⋯Cg4v 0.98 3.11 3.914 (3) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}], [z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Spiro compounds having cyclic structures fused at a central carbon are of recent interest, due to their interesting conformational feature and structural implications on biological systems (Pradhan et al., 2006). The asymmetric characteristic of the molecule due to the chiral spiro carbon is one of the important criteria of the biological activities. For example, some spiro compounds show antibacterial and antiviral activities (Useglio et al., 2006, Kazmierski et al., 2006). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C3/C5-C7) and C (C11-C14/C16/C17) are, of course, planar and they are oriented at a dihedral angle of A/C = 59.32 (4)°. Rings B (N1/N2/C8-C10/C18) and D (N3/N4/C18-C21) have flattened-boat [ϕ = -54.22 (2)°, θ = 129.53 (3)° (for ring B) and ϕ = 52.72 (3)°, θ = 21.44 (3)° (for ring D)] conformations, having total puckering amplitudes, QT, of 1.186 (3) and 0.174 (3) Å, respectively (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The C—H···π contacts (Table 1) between the ring C and the methyl and methine groups further stabilize the structure.

Related literature top

For general background, see: Pradhan et al. (2006); Useglio et al. (2006); Kazmierski et al. (2006). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975). Cg4 is the centroid of the C11–C14/C16/C17 ring. Please check/supply symmetry codes.

Experimental top

For the preparation of the title compound, a mixture of 4-methylbenzaldehyde (0.24 g, 2 mmol), barbituric acid (0.13 g, 1 mmol), and urea (0.06 g, 1 mmol) was heated at 373 K. After 2 h, the reaction mixture was washed with water (10 ml). The residue recrystallized from ethanol to afford the pure product (yield; 0.25 g, 65%, m.p. 519-521 K).

Refinement top

H1B, H2B, H3 and H4D atoms (for NH) were located in difference syntheses and refined isotropically [N-H = 0.77 (4)-0.87 (4) Å and Uiso(H) = 0.032 (8) -0.076 (14) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
7,11-Bis(4-methylphenyl)-2,4,8,10-tetraazaspiro[5.5]undecane-1,3,5,9-tetraone top
Crystal data top
C21H20N4O4F(000) = 824
Mr = 392.41Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2021 reflections
a = 8.852 (2) Åθ = 2.0–28.1°
b = 12.538 (3) ŵ = 0.1 mm1
c = 17.259 (4) ÅT = 298 K
β = 104.483 (18)°Prism, yellow
V = 1854.6 (8) Å30.15 × 0.11 × 0.1 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
3107 reflections with I > 2σ(I)
rotation method scansRint = 0.093
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005))
θmax = 28.1°, θmin = 2.0°
Tmin = 0.979, Tmax = 0.991h = 1111
17766 measured reflectionsk = 1616
4456 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.081 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.8069P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.003
S = 1.13Δρmax = 0.43 e Å3
4456 reflectionsΔρmin = 0.44 e Å3
278 parameters
Crystal data top
C21H20N4O4V = 1854.6 (8) Å3
Mr = 392.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.852 (2) ŵ = 0.1 mm1
b = 12.538 (3) ÅT = 298 K
c = 17.259 (4) Å0.15 × 0.11 × 0.1 mm
β = 104.483 (18)°
Data collection top
Stoe IPDSII
diffractometer
4456 independent reflections
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005))
3107 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.991Rint = 0.093
17766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.43 e Å3
4456 reflectionsΔρmin = 0.44 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0239 (3)0.62989 (17)0.65204 (12)0.0446 (5)
O21.0451 (3)0.60240 (17)0.43863 (13)0.0463 (6)
O30.7614 (3)0.63921 (19)0.18421 (13)0.0522 (6)
O40.6359 (3)0.85414 (18)0.36650 (13)0.0520 (6)
N10.8229 (3)0.6195 (2)0.54163 (15)0.0417 (6)
H1B0.809 (5)0.559 (4)0.553 (3)0.076 (14)*
N20.9943 (3)0.7595 (2)0.55764 (14)0.0403 (6)
H2B1.069 (4)0.787 (3)0.582 (2)0.046 (10)*
N30.8909 (3)0.6150 (2)0.31407 (15)0.0393 (6)
H30.936 (4)0.563 (3)0.3020 (19)0.032 (8)*
N40.7093 (3)0.7516 (2)0.27656 (14)0.0381 (6)
H4D0.646 (4)0.787 (3)0.239 (2)0.045 (9)*
C10.4632 (4)0.5999 (3)0.3870 (2)0.0453 (7)
H10.42280.66650.39440.054*
C20.3664 (4)0.5232 (3)0.3421 (2)0.0516 (8)
H20.26220.53970.31960.062*
C30.4211 (4)0.4227 (3)0.33000 (18)0.0455 (7)
C40.3157 (5)0.3384 (3)0.2819 (2)0.0634 (10)
H4A0.31230.27760.31520.076*
H4B0.35560.31720.23740.076*
H4C0.21250.36680.26260.076*
C50.5765 (4)0.4012 (3)0.3651 (2)0.0489 (8)
H50.61620.3340.35870.059*
C60.6746 (4)0.4773 (2)0.40958 (19)0.0448 (7)
H60.77870.46060.4320.054*
C70.6191 (3)0.5784 (2)0.42101 (16)0.0363 (6)
C80.7243 (3)0.6631 (2)0.46862 (16)0.0357 (6)
H80.65680.71660.48420.043*
C90.9505 (4)0.6683 (2)0.58658 (16)0.0361 (6)
C100.9253 (3)0.8080 (2)0.48001 (16)0.0349 (6)
H100.85110.86210.48850.042*
C111.0480 (4)0.8656 (2)0.44822 (17)0.0374 (7)
C121.0027 (4)0.9543 (2)0.39888 (18)0.0417 (7)
H120.89840.97460.38440.05*
C131.1118 (4)1.0120 (2)0.3715 (2)0.0491 (8)
H131.07921.06950.33740.059*
C141.2688 (4)0.9861 (2)0.3938 (2)0.0474 (8)
C151.3894 (5)1.0521 (3)0.3674 (3)0.0694 (11)
H15A1.38661.1240.38620.083*
H15B1.36731.05210.31010.083*
H15C1.49111.02240.38920.083*
C161.3123 (4)0.8966 (3)0.4421 (2)0.0511 (8)
H161.41680.87680.45680.061*
C171.2051 (4)0.8368 (3)0.46843 (19)0.0455 (8)
H171.23750.77690.49990.055*
C180.8296 (3)0.7230 (2)0.42113 (15)0.0340 (6)
C190.9342 (3)0.6434 (2)0.39333 (16)0.0335 (6)
C200.7848 (3)0.6665 (2)0.25345 (17)0.0356 (6)
C210.7178 (3)0.7831 (2)0.35308 (16)0.0343 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (13)0.0453 (11)0.0249 (10)0.0030 (10)0.0049 (9)0.0011 (8)
O20.0490 (13)0.0443 (11)0.0358 (11)0.0170 (10)0.0075 (10)0.0017 (9)
O30.0634 (15)0.0587 (14)0.0279 (11)0.0076 (12)0.0013 (10)0.0114 (10)
O40.0593 (14)0.0517 (13)0.0381 (12)0.0261 (11)0.0007 (10)0.0024 (10)
N10.0491 (15)0.0430 (14)0.0264 (12)0.0046 (12)0.0030 (11)0.0014 (10)
N20.0495 (15)0.0402 (13)0.0231 (11)0.0030 (12)0.0059 (11)0.0012 (10)
N30.0442 (14)0.0381 (13)0.0312 (13)0.0117 (11)0.0012 (10)0.0082 (10)
N40.0440 (14)0.0405 (13)0.0233 (11)0.0111 (11)0.0040 (10)0.0010 (10)
C10.0410 (16)0.0415 (16)0.0491 (19)0.0038 (13)0.0031 (14)0.0023 (13)
C20.0364 (16)0.059 (2)0.053 (2)0.0003 (15)0.0014 (14)0.0024 (16)
C30.0520 (19)0.0473 (17)0.0335 (15)0.0100 (14)0.0041 (14)0.0023 (13)
C40.070 (2)0.051 (2)0.060 (2)0.0199 (18)0.0006 (19)0.0005 (17)
C50.059 (2)0.0394 (16)0.0446 (18)0.0011 (15)0.0052 (15)0.0016 (13)
C60.0437 (17)0.0436 (16)0.0422 (17)0.0069 (13)0.0012 (14)0.0002 (13)
C70.0394 (15)0.0402 (15)0.0259 (13)0.0013 (12)0.0017 (11)0.0023 (11)
C80.0411 (15)0.0398 (14)0.0231 (12)0.0060 (12)0.0023 (11)0.0020 (11)
C90.0441 (16)0.0401 (14)0.0214 (12)0.0050 (12)0.0034 (11)0.0023 (11)
C100.0435 (15)0.0327 (13)0.0233 (13)0.0067 (12)0.0014 (11)0.0034 (10)
C110.0508 (17)0.0291 (13)0.0283 (13)0.0034 (12)0.0025 (12)0.0022 (11)
C120.0504 (18)0.0349 (14)0.0375 (16)0.0116 (13)0.0067 (13)0.0021 (12)
C130.072 (2)0.0317 (14)0.0444 (18)0.0090 (15)0.0163 (16)0.0030 (13)
C140.058 (2)0.0382 (15)0.0455 (18)0.0030 (14)0.0127 (15)0.0037 (13)
C150.074 (3)0.054 (2)0.081 (3)0.007 (2)0.021 (2)0.009 (2)
C160.0467 (18)0.0494 (18)0.053 (2)0.0031 (15)0.0053 (15)0.0036 (15)
C170.0488 (18)0.0423 (16)0.0401 (17)0.0082 (14)0.0012 (14)0.0065 (13)
C180.0415 (15)0.0334 (13)0.0221 (12)0.0081 (12)0.0018 (11)0.0019 (10)
C190.0374 (15)0.0328 (13)0.0263 (13)0.0054 (11)0.0001 (11)0.0011 (10)
C200.0372 (15)0.0376 (14)0.0277 (13)0.0025 (12)0.0002 (11)0.0015 (11)
C210.0367 (14)0.0347 (13)0.0265 (13)0.0078 (12)0.0013 (11)0.0006 (11)
Geometric parameters (Å, º) top
C1—C71.384 (4)C11—C121.398 (4)
C1—C21.388 (5)C12—C131.381 (5)
C1—H10.93C12—H120.93
C2—C31.385 (5)C13—C141.384 (5)
C2—H20.93C13—H130.93
C3—C51.384 (5)C14—C161.393 (5)
C3—C41.513 (5)C14—C151.509 (5)
C4—H4A0.96C15—H15A0.96
C4—H4B0.96C15—H15B0.96
C4—H4C0.96C15—H15C0.96
C5—C61.385 (4)C16—C171.372 (5)
C5—H50.93C16—H160.93
C6—C71.390 (4)C17—H170.93
C6—H60.93C18—C191.518 (4)
C7—C81.512 (4)C18—C211.531 (4)
C8—N11.449 (4)C19—O21.207 (3)
C8—C181.577 (4)C19—N31.372 (3)
C8—H80.98C20—O31.210 (3)
C9—O11.250 (3)C20—N41.370 (4)
C9—N21.344 (4)C20—N31.379 (4)
C9—N11.346 (4)C21—O41.207 (3)
C10—N21.459 (3)C21—N41.362 (4)
C10—C111.516 (4)N1—H1B0.80 (5)
C10—C181.568 (4)N2—H2B0.77 (4)
C10—H100.98N3—H30.82 (3)
C11—C171.393 (4)N4—H4D0.87 (4)
C7—C1—C2120.8 (3)C12—C13—C14121.4 (3)
C7—C1—H1119.6C12—C13—H13119.3
C2—C1—H1119.6C14—C13—H13119.3
C3—C2—C1121.6 (3)C13—C14—C16117.6 (3)
C3—C2—H2119.2C13—C14—C15121.6 (3)
C1—C2—H2119.2C16—C14—C15120.8 (3)
C5—C3—C2117.2 (3)C14—C15—H15A109.5
C5—C3—C4120.9 (3)C14—C15—H15B109.5
C2—C3—C4121.9 (3)H15A—C15—H15B109.5
C3—C4—H4A109.5C14—C15—H15C109.5
C3—C4—H4B109.5H15A—C15—H15C109.5
H4A—C4—H4B109.5H15B—C15—H15C109.5
C3—C4—H4C109.5C17—C16—C14121.8 (3)
H4A—C4—H4C109.5C17—C16—H16119.1
H4B—C4—H4C109.5C14—C16—H16119.1
C3—C5—C6121.7 (3)C16—C17—C11120.3 (3)
C3—C5—H5119.2C16—C17—H17119.8
C6—C5—H5119.2C11—C17—H17119.8
C5—C6—C7120.8 (3)C19—C18—C21114.1 (2)
C5—C6—H6119.6C19—C18—C10112.2 (2)
C7—C6—H6119.6C21—C18—C10107.7 (2)
C1—C7—C6117.9 (3)C19—C18—C8109.7 (2)
C1—C7—C8120.4 (3)C21—C18—C8106.3 (2)
C6—C7—C8121.7 (3)C10—C18—C8106.3 (2)
N1—C8—C7111.3 (2)O2—C19—N3121.0 (3)
N1—C8—C18109.0 (2)O2—C19—C18122.5 (2)
C7—C8—C18114.6 (2)N3—C19—C18116.5 (2)
N1—C8—H8107.2O3—C20—N4122.2 (3)
C7—C8—H8107.2O3—C20—N3122.1 (3)
C18—C8—H8107.2N4—C20—N3115.7 (2)
O1—C9—N2122.1 (3)O4—C21—N4120.6 (2)
O1—C9—N1121.1 (3)O4—C21—C18121.3 (3)
N2—C9—N1116.8 (3)N4—C21—C18118.0 (2)
N2—C10—C11110.9 (2)C9—N1—C8124.5 (3)
N2—C10—C18110.2 (2)C9—N1—H1B117 (3)
C11—C10—C18114.1 (2)C8—N1—H1B118 (3)
N2—C10—H10107C9—N2—C10127.1 (3)
C11—C10—H10107C9—N2—H2B118 (3)
C18—C10—H10107C10—N2—H2B114 (3)
C17—C11—C12118.3 (3)C19—N3—C20127.0 (3)
C17—C11—C10123.1 (3)C19—N3—H3115 (2)
C12—C11—C10118.5 (3)C20—N3—H3118 (2)
C13—C12—C11120.4 (3)C21—N4—C20126.5 (2)
C13—C12—H12119.8C21—N4—H4D117 (2)
C11—C12—H12119.8C20—N4—H4D117 (2)
C7—C1—C2—C30.4 (5)N1—C8—C18—C1965.8 (3)
C1—C2—C3—C50.5 (5)C7—C8—C18—C1959.7 (3)
C1—C2—C3—C4179.3 (4)N1—C8—C18—C21170.3 (2)
C2—C3—C5—C61.0 (5)C7—C8—C18—C2164.2 (3)
C4—C3—C5—C6179.8 (3)N1—C8—C18—C1055.8 (3)
C3—C5—C6—C70.5 (5)C7—C8—C18—C10178.7 (2)
C2—C1—C7—C60.8 (5)C21—C18—C19—O2167.7 (3)
C2—C1—C7—C8178.9 (3)C10—C18—C19—O244.8 (4)
C5—C6—C7—C10.4 (5)C8—C18—C19—O273.1 (3)
C5—C6—C7—C8179.4 (3)C21—C18—C19—N316.2 (4)
C1—C7—C8—N1136.0 (3)C10—C18—C19—N3139.0 (3)
C6—C7—C8—N144.2 (4)C8—C18—C19—N3103.0 (3)
C1—C7—C8—C1899.7 (3)C19—C18—C21—O4174.6 (3)
C6—C7—C8—C1880.0 (3)C10—C18—C21—O449.3 (4)
N2—C10—C11—C1727.2 (4)C8—C18—C21—O464.3 (3)
C18—C10—C11—C1798.0 (3)C19—C18—C21—N47.6 (4)
N2—C10—C11—C12150.1 (3)C10—C18—C21—N4132.9 (3)
C18—C10—C11—C1284.6 (3)C8—C18—C21—N4113.5 (3)
C17—C11—C12—C130.4 (4)O1—C9—N1—C8174.7 (3)
C10—C11—C12—C13177.0 (3)N2—C9—N1—C85.4 (5)
C11—C12—C13—C141.9 (5)C7—C8—N1—C9164.5 (3)
C12—C13—C14—C162.8 (5)C18—C8—N1—C937.2 (4)
C12—C13—C14—C15176.9 (3)O1—C9—N2—C10175.3 (3)
C13—C14—C16—C171.4 (5)N1—C9—N2—C104.6 (5)
C15—C14—C16—C17178.4 (4)C11—C10—N2—C9146.8 (3)
C14—C16—C17—C110.9 (5)C18—C10—N2—C919.4 (4)
C12—C11—C17—C161.8 (5)O2—C19—N3—C20168.4 (3)
C10—C11—C17—C16175.5 (3)C18—C19—N3—C2015.4 (4)
N2—C10—C18—C1972.4 (3)O3—C20—N3—C19175.2 (3)
C11—C10—C18—C1953.3 (3)N4—C20—N3—C193.9 (5)
N2—C10—C18—C21161.2 (2)O4—C21—N4—C20173.8 (3)
C11—C10—C18—C2173.2 (3)C18—C21—N4—C204.0 (4)
N2—C10—C18—C847.6 (3)O3—C20—N4—C21174.2 (3)
C11—C10—C18—C8173.3 (2)N3—C20—N4—C216.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.80 (5)2.39 (5)3.004 (3)135 (4)
N2—H2B···O3ii0.77 (4)2.32 (3)3.065 (4)164 (3)
N3—H3···O1i0.82 (4)2.54 (4)3.181 (3)136 (3)
N4—H4D···O1iii0.87 (4)1.92 (4)2.785 (3)174 (3)
C4—H4B···Cg4iv0.963.023.721 (3)131
C10—H10···Cg4v0.983.113.914 (3)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H20N4O4
Mr392.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.852 (2), 12.538 (3), 17.259 (4)
β (°) 104.483 (18)
V3)1854.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.1
Crystal size (mm)0.15 × 0.11 × 0.1
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005))
Tmin, Tmax0.979, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
17766, 4456, 3107
Rint0.093
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.148, 1.13
No. of reflections4456
No. of parameters278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.44

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.80 (5)2.39 (5)3.004 (3)135 (4)
N2—H2B···O3ii0.77 (4)2.32 (3)3.065 (4)164 (3)
N3—H3···O1i0.82 (4)2.54 (4)3.181 (3)136 (3)
N4—H4D···O1iii0.87 (4)1.92 (4)2.785 (3)174 (3)
C4—H4B···Cg4iv0.963.0183.721 (3)131
C10—H10···Cg4v0.983.1063.914 (3)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, Dorood Branch, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKazmierski, W. M., Furfine, E., Spaltenstein, A. & Wright, L. L. (2006). Bioorg. Med. Chem. Lett. 16, 5226–5230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPradhan, R., Patra, M., Behera, A. K., Mishra, B. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUseglio, M., Castellano, P. M., Operto, M. A., Torres, R. & Kaufmen, T. S. (2006). Bioorg. Med. Chem. Lett. 16, 5097–5101.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds