organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Bis(3,4,5-tri­meth­oxy­phen­yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aInstitute of Natural Products, Research Center for Eco-Environmental Sciences, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environmental Sciences, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, and cAnalytical Center, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@gz139.com.cn

(Received 16 July 2008; accepted 18 July 2008; online 23 July 2008)

In the mol­ecule of the title compound, C21H22N4O6S, the planar central heterocyclic ring system is oriented with respect to the trimethoxy­phenyl rings at dihedral angles of 2.60 (5) and 3.60 (6)°. Intra­molecular C—H⋯N and C—H⋯S hydrogen bonds result in the formation of planar five- and six-membered rings. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. There is a C—H⋯π contact between a methyl group and a trimethoxy­phenyl ring, and a ππ contact between the central heterocyclic ring system and a trimethoxy­phenyl ring [centroid–centroid distance = 3.640 (1) Å].

Related literature

For general background, see: Karabasanagouda et al. (2007[Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521-529.]); Mathew et al. (2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N4O6S

  • Mr = 458.49

  • Triclinic, [P \overline 1]

  • a = 8.6762 (17) Å

  • b = 8.9289 (18) Å

  • c = 13.735 (3) Å

  • α = 94.50 (3)°

  • β = 90.82 (3)°

  • γ = 90.47 (3)°

  • V = 1060.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.957, Tmax = 0.980

  • 6899 measured reflections

  • 3720 independent reflections

  • 3102 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 1.19

  • 3720 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N4 0.93 2.36 3.047 (3) 130
C14—H14⋯S1 0.93 2.72 3.130 (3) 108
C19—H19B⋯O3i 0.96 2.53 3.384 (2) 148
C21—H21B⋯O1ii 0.96 2.43 3.331 (3) 156
C19—H19CCg3iii 0.96 3.30 4.057 (3) 137
Symmetry codes: (i) x+1, y, z-1; (ii) -x, -y, -z+2; (iii) -x+1, -y+1, -z. Cg3 is the centroid of the trimethoxyphenyl ring C1–C6.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and 1,3,4-thiadiazole represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities. Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles are associated with diverse pharmacological activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory activity (Mathew et al., 2007). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C1-C6), B (N1-N3/C10/C11), C (S1/N3/N4/C11/C12) and D (C13-C18) are, of course, planar, and the dihedral angles between them are A/B = 3.42 (6)°, A/C = 1.96 (5)°, A/D = 4.76 (5)°, B/C = 1.65 (6)°, B/D = 3.91 (6)° and C/D = 3.42 (5)°. So, the rings are nearly coplanar. The intramolecular C-H···N and C-H···S hydrogen bonds (Table 1) result in the formation of planar six- and five-membered rings E: (N3/N4/C1/C2/C10/H2) and F (S1/C12-C14/H14), in which they are oriented with respect to the planar central heterocylic ring system at dihedral angles of 1.56 (5)° and 4.00 (5)°, respectively.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A C—H···π contact (Table 1) between the trimethoxyphenyl ring and the methyl group and a ππ contact between B and D rings Cg2···Cg4i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg2 and Cg4 are centroids of the rings B (N1-N3/C10/C11) and D (C13-C18), respectively] further stabilize the structure, with centroid-centroid distance of 3.640 (1) Å.

Related literature top

For general background, see: Karabasanagouda et al. (2007); Mathew et al. (2007).

Experimental top

For the preparation of the title compound, 4-amino-5-(3,4,5-trimethoxyphenyl) -4H-1,2,4-triazole-3-thiol (0.01 M) and 3,4,5-trimethoxybenzoic acid (0.01 M) were dissolved in dry phosphorous oxychloride (10 ml). The resulted solution was further heated under reflux for 7 h. The reaction mixture was cooled to room temperature and the mixture was gradually poured onto crushed ice with stirring. Finally, powdered potassium carbonate and the required amount of solid potassium hydroxide were added until the pH of the mixture was raised to 8, to remove the excess of phosphorous oxychloride. The mixture was allowed to stand overnight and the solid was separated. It was filtered, washed with cold water, and then dried. Crystals suitable for X-ray analysis were obtained by the recrystallization of the solid residue from a mixture of N,N-dimethyl- formamide/ethanol (1:1) by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3,6-Bis(3,4,5-trimethoxyphenyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C21H22N4O6SZ = 2
Mr = 458.49F(000) = 480
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Melting point: 423 K
a = 8.6762 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9289 (18) ÅCell parameters from 3022 reflections
c = 13.735 (3) Åθ = 2.8–27.9°
α = 94.50 (3)°µ = 0.20 mm1
β = 90.82 (3)°T = 113 K
γ = 90.47 (3)°Prism, colorless
V = 1060.6 (4) Å30.22 × 0.20 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3720 independent reflections
Radiation source: rotating anode3102 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.022
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 710
Tmin = 0.957, Tmax = 0.980k = 1010
6899 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.2575P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.003
3720 reflectionsΔρmax = 0.93 e Å3
295 parametersΔρmin = 0.56 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H22N4O6Sγ = 90.47 (3)°
Mr = 458.49V = 1060.6 (4) Å3
Triclinic, P1Z = 2
a = 8.6762 (17) ÅMo Kα radiation
b = 8.9289 (18) ŵ = 0.20 mm1
c = 13.735 (3) ÅT = 113 K
α = 94.50 (3)°0.22 × 0.20 × 0.10 mm
β = 90.82 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3720 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3102 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.980Rint = 0.022
6899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044295 parameters
wR(F2) = 0.137H-atom parameters constrained
S = 1.19Δρmax = 0.93 e Å3
3720 reflectionsΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50010 (6)0.76590 (6)0.89162 (4)0.01987 (19)
O10.04182 (18)0.27249 (17)1.14986 (12)0.0270 (4)
O20.17317 (18)0.40003 (18)1.31069 (12)0.0282 (4)
O30.09095 (19)0.67584 (18)1.38496 (11)0.0290 (4)
O40.6387 (2)0.3996 (2)0.57836 (12)0.0352 (4)
O50.5139 (3)0.1310 (2)0.59409 (12)0.0457 (5)
O60.3352 (2)0.07371 (18)0.74567 (12)0.0305 (4)
N10.2808 (2)0.88200 (19)1.13007 (13)0.0207 (4)
N20.3818 (2)0.9307 (2)1.06090 (13)0.0220 (4)
N30.31915 (19)0.69318 (18)1.02331 (12)0.0161 (4)
N40.3240 (2)0.56265 (19)0.96337 (12)0.0173 (4)
C10.1406 (2)0.6468 (2)1.16140 (15)0.0175 (4)
C20.1044 (2)0.5002 (2)1.12685 (15)0.0197 (5)
H20.14770.45831.06950.024*
C30.0031 (2)0.4170 (2)1.17875 (16)0.0204 (5)
C40.0631 (2)0.4788 (2)1.26440 (16)0.0209 (5)
C50.0226 (2)0.6260 (2)1.29933 (15)0.0205 (5)
C60.0775 (2)0.7102 (2)1.24824 (14)0.0193 (5)
H60.10290.80821.27130.023*
C70.0400 (3)0.1984 (3)1.07097 (18)0.0311 (6)
H7A0.02410.25051.01310.047*
H7B0.00290.09691.05960.047*
H7C0.14800.19811.08710.047*
C80.1128 (3)0.3006 (3)1.37736 (19)0.0356 (6)
H8A0.04560.23001.34350.053*
H8B0.19610.24751.40510.053*
H8C0.05610.35721.42850.053*
C90.0618 (3)0.8283 (3)1.41985 (17)0.0354 (6)
H9A0.04690.84351.43080.053*
H9B0.11520.85041.48000.053*
H9C0.09760.89361.37220.053*
C100.2438 (2)0.7397 (2)1.10791 (15)0.0184 (5)
C110.4024 (2)0.8140 (2)0.99828 (15)0.0178 (4)
C120.4137 (2)0.5860 (2)0.89114 (15)0.0175 (4)
C130.4421 (2)0.4679 (2)0.81339 (15)0.0179 (5)
C140.5310 (2)0.4968 (3)0.73302 (15)0.0218 (5)
H140.57420.59160.72830.026*
C150.5545 (3)0.3832 (3)0.66039 (16)0.0260 (5)
C160.4910 (3)0.2408 (3)0.66800 (16)0.0285 (5)
C170.3990 (3)0.2149 (2)0.74754 (16)0.0233 (5)
C180.3746 (2)0.3271 (2)0.82064 (15)0.0201 (5)
H180.31400.30900.87390.024*
C190.6870 (3)0.5477 (3)0.56178 (19)0.0390 (6)
H19A0.59950.61310.56470.058*
H19B0.73250.54760.49850.058*
H19C0.76150.58270.61090.058*
C200.5942 (4)0.0017 (3)0.6225 (2)0.0512 (8)
H20A0.64910.02230.68300.077*
H20B0.66570.03430.57270.077*
H20C0.52070.08060.63070.077*
C210.2401 (3)0.0431 (3)0.82573 (17)0.0280 (5)
H21A0.29910.05700.88550.042*
H21B0.20290.05870.81710.042*
H21C0.15430.11050.82860.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0218 (3)0.0164 (3)0.0217 (3)0.0034 (2)0.0056 (2)0.0029 (2)
O10.0264 (9)0.0190 (8)0.0353 (9)0.0065 (7)0.0089 (7)0.0005 (7)
O20.0202 (8)0.0324 (9)0.0340 (9)0.0024 (7)0.0086 (7)0.0152 (7)
O30.0334 (9)0.0306 (9)0.0232 (8)0.0000 (7)0.0118 (7)0.0019 (7)
O40.0383 (10)0.0439 (11)0.0231 (8)0.0078 (8)0.0124 (7)0.0015 (7)
O50.0724 (14)0.0362 (10)0.0262 (9)0.0092 (10)0.0121 (9)0.0138 (8)
O60.0376 (10)0.0214 (8)0.0315 (9)0.0086 (7)0.0036 (7)0.0039 (7)
N10.0232 (10)0.0171 (9)0.0219 (9)0.0036 (7)0.0039 (8)0.0027 (7)
N20.0260 (10)0.0176 (9)0.0226 (9)0.0041 (8)0.0069 (8)0.0029 (7)
N30.0166 (9)0.0137 (8)0.0181 (9)0.0016 (7)0.0019 (7)0.0022 (7)
N40.0177 (9)0.0148 (9)0.0194 (9)0.0006 (7)0.0010 (7)0.0013 (7)
C10.0142 (10)0.0191 (10)0.0197 (10)0.0005 (8)0.0003 (8)0.0049 (8)
C20.0172 (11)0.0219 (11)0.0203 (11)0.0007 (9)0.0046 (9)0.0018 (9)
C30.0175 (11)0.0172 (10)0.0270 (11)0.0017 (8)0.0006 (9)0.0044 (9)
C40.0152 (10)0.0232 (11)0.0256 (11)0.0002 (8)0.0031 (9)0.0086 (9)
C50.0187 (11)0.0252 (12)0.0181 (10)0.0043 (9)0.0023 (9)0.0049 (9)
C60.0206 (11)0.0181 (10)0.0193 (11)0.0014 (9)0.0008 (9)0.0025 (8)
C70.0317 (13)0.0234 (12)0.0373 (14)0.0052 (10)0.0068 (11)0.0041 (10)
C80.0365 (14)0.0379 (14)0.0351 (14)0.0037 (11)0.0067 (11)0.0187 (11)
C90.0519 (17)0.0324 (14)0.0218 (12)0.0057 (12)0.0101 (11)0.0018 (10)
C100.0184 (11)0.0192 (10)0.0177 (10)0.0007 (8)0.0004 (8)0.0018 (8)
C110.0174 (10)0.0161 (10)0.0205 (10)0.0034 (8)0.0005 (8)0.0060 (8)
C120.0159 (10)0.0175 (10)0.0195 (10)0.0008 (8)0.0010 (8)0.0049 (8)
C130.0155 (10)0.0203 (11)0.0181 (10)0.0007 (8)0.0017 (8)0.0028 (8)
C140.0189 (11)0.0260 (11)0.0207 (11)0.0031 (9)0.0001 (9)0.0034 (9)
C150.0228 (12)0.0371 (13)0.0179 (11)0.0019 (10)0.0032 (9)0.0006 (9)
C160.0325 (13)0.0310 (13)0.0204 (11)0.0034 (10)0.0021 (10)0.0072 (10)
C170.0249 (12)0.0190 (11)0.0253 (12)0.0028 (9)0.0031 (9)0.0020 (9)
C180.0181 (11)0.0227 (11)0.0198 (10)0.0006 (9)0.0003 (9)0.0025 (9)
C190.0391 (10)0.0433 (10)0.0349 (9)0.0054 (8)0.0068 (8)0.0050 (8)
C200.0504 (11)0.0500 (11)0.0512 (11)0.0040 (9)0.0021 (9)0.0090 (9)
C210.0274 (13)0.0211 (11)0.0357 (13)0.0031 (10)0.0010 (10)0.0035 (10)
Geometric parameters (Å, º) top
S1—C111.729 (2)C6—H60.9300
S1—C121.766 (2)C7—H7A0.9600
O1—C31.372 (3)C7—H7B0.9600
O1—C71.426 (3)C7—H7C0.9600
O2—C41.374 (3)C8—H8A0.9600
O2—C81.422 (3)C8—H8B0.9600
O3—C51.369 (3)C8—H8C0.9600
O3—C91.427 (3)C9—H9A0.9600
O4—C151.369 (3)C9—H9B0.9600
O4—C191.420 (3)C9—H9C0.9600
O5—C161.372 (3)C12—C131.465 (3)
O5—C201.456 (4)C13—C181.394 (3)
O6—C171.371 (3)C13—C141.395 (3)
O6—C211.426 (3)C14—C151.384 (3)
N1—C101.319 (3)C14—H140.9300
N1—N21.394 (3)C15—C161.394 (3)
N2—C111.313 (3)C16—C171.395 (3)
N3—C111.363 (3)C17—C181.382 (3)
N3—N41.374 (2)C18—H180.9300
N3—C101.379 (3)C19—H19A0.9600
N4—C121.299 (3)C19—H19B0.9600
C1—C21.389 (3)C19—H19C0.9600
C1—C61.400 (3)C20—H20A0.9600
C1—C101.460 (3)C20—H20B0.9600
C2—C31.387 (3)C20—H20C0.9600
C2—H20.9300C21—H21A0.9600
C3—C41.393 (3)C21—H21B0.9600
C4—C51.403 (3)C21—H21C0.9600
C5—C61.380 (3)
C11—S1—C1287.61 (10)H9A—C9—H9C109.5
C3—O1—C7116.73 (17)H9B—C9—H9C109.5
C4—O2—C8114.35 (17)N1—C10—N3107.57 (18)
C5—O3—C9116.88 (18)N1—C10—C1127.0 (2)
C15—O4—C19116.8 (2)N3—C10—C1125.41 (19)
C16—O5—C20115.3 (2)N2—C11—N3110.97 (18)
C17—O6—C21116.75 (17)N2—C11—S1139.70 (16)
C10—N1—N2109.70 (17)N3—C11—S1109.32 (15)
C11—N2—N1105.61 (16)N4—C12—C13121.29 (19)
C11—N3—N4118.40 (17)N4—C12—S1116.85 (16)
C11—N3—C10106.15 (17)C13—C12—S1121.85 (16)
N4—N3—C10135.43 (17)C18—C13—C14120.9 (2)
C12—N4—N3107.81 (17)C18—C13—C12118.23 (19)
C2—C1—C6120.74 (19)C14—C13—C12120.9 (2)
C2—C1—C10121.14 (19)C15—C14—C13119.4 (2)
C6—C1—C10118.12 (19)C15—C14—H14120.3
C3—C2—C1119.3 (2)C13—C14—H14120.3
C3—C2—H2120.4O4—C15—C14124.2 (2)
C1—C2—H2120.4O4—C15—C16115.5 (2)
O1—C3—C2123.7 (2)C14—C15—C16120.3 (2)
O1—C3—C4115.37 (19)O5—C16—C15119.0 (2)
C2—C3—C4120.9 (2)O5—C16—C17121.3 (2)
O2—C4—C3120.4 (2)C15—C16—C17119.6 (2)
O2—C4—C5120.5 (2)O6—C17—C18124.0 (2)
C3—C4—C5118.98 (19)O6—C17—C16115.1 (2)
O3—C5—C6124.52 (19)C18—C17—C16120.8 (2)
O3—C5—C4114.81 (19)C17—C18—C13119.0 (2)
C6—C5—C4120.67 (19)C17—C18—H18120.5
C5—C6—C1119.37 (19)C13—C18—H18120.5
C5—C6—H6120.3O4—C19—H19A109.5
C1—C6—H6120.3O4—C19—H19B109.5
O1—C7—H7A109.5H19A—C19—H19B109.5
O1—C7—H7B109.5O4—C19—H19C109.5
H7A—C7—H7B109.5H19A—C19—H19C109.5
O1—C7—H7C109.5H19B—C19—H19C109.5
H7A—C7—H7C109.5O5—C20—H20A109.5
H7B—C7—H7C109.5O5—C20—H20B109.5
O2—C8—H8A109.5H20A—C20—H20B109.5
O2—C8—H8B109.5O5—C20—H20C109.5
H8A—C8—H8B109.5H20A—C20—H20C109.5
O2—C8—H8C109.5H20B—C20—H20C109.5
H8A—C8—H8C109.5O6—C21—H21A109.5
H8B—C8—H8C109.5O6—C21—H21B109.5
O3—C9—H9A109.5H21A—C21—H21B109.5
O3—C9—H9B109.5O6—C21—H21C109.5
H9A—C9—H9B109.5H21A—C21—H21C109.5
O3—C9—H9C109.5H21B—C21—H21C109.5
C10—N1—N2—C110.1 (2)N4—N3—C11—N2177.96 (17)
C11—N3—N4—C120.1 (2)C10—N3—C11—N20.6 (2)
C10—N3—N4—C12178.2 (2)N4—N3—C11—S10.9 (2)
C6—C1—C2—C30.8 (3)C10—N3—C11—S1179.49 (13)
C10—C1—C2—C3178.50 (19)C12—S1—C11—N2177.3 (3)
C7—O1—C3—C210.3 (3)C12—S1—C11—N31.03 (15)
C7—O1—C3—C4171.13 (19)N3—N4—C12—C13179.48 (17)
C1—C2—C3—O1178.88 (19)N3—N4—C12—S10.8 (2)
C1—C2—C3—C40.4 (3)C11—S1—C12—N41.12 (17)
C8—O2—C4—C386.6 (3)C11—S1—C12—C13179.16 (18)
C8—O2—C4—C597.3 (2)N4—C12—C13—C182.4 (3)
O1—C3—C4—O24.2 (3)S1—C12—C13—C18177.34 (15)
C2—C3—C4—O2174.44 (19)N4—C12—C13—C14176.02 (19)
O1—C3—C4—C5179.64 (19)S1—C12—C13—C144.3 (3)
C2—C3—C4—C51.7 (3)C18—C13—C14—C151.1 (3)
C9—O3—C5—C63.6 (3)C12—C13—C14—C15179.42 (19)
C9—O3—C5—C4175.7 (2)C19—O4—C15—C148.6 (3)
O2—C4—C5—O35.2 (3)C19—O4—C15—C16171.6 (2)
C3—C4—C5—O3178.67 (18)C13—C14—C15—O4179.6 (2)
O2—C4—C5—C6174.19 (18)C13—C14—C15—C160.6 (3)
C3—C4—C5—C62.0 (3)C20—O5—C16—C15119.7 (3)
O3—C5—C6—C1179.86 (19)C20—O5—C16—C1763.8 (3)
C4—C5—C6—C10.9 (3)O4—C15—C16—O51.3 (3)
C2—C1—C6—C50.5 (3)C14—C15—C16—O5178.9 (2)
C10—C1—C6—C5178.77 (18)O4—C15—C16—C17177.9 (2)
N2—N1—C10—N30.4 (2)C14—C15—C16—C172.3 (4)
N2—N1—C10—C1179.76 (19)C21—O6—C17—C181.0 (3)
C11—N3—C10—N10.6 (2)C21—O6—C17—C16179.9 (2)
N4—N3—C10—N1177.6 (2)O5—C16—C17—O60.1 (3)
C11—N3—C10—C1179.98 (19)C15—C16—C17—O6176.6 (2)
N4—N3—C10—C11.7 (4)O5—C16—C17—C18178.8 (2)
C2—C1—C10—N1176.3 (2)C15—C16—C17—C182.3 (4)
C6—C1—C10—N13.1 (3)O6—C17—C18—C13178.1 (2)
C2—C1—C10—N32.9 (3)C16—C17—C18—C130.7 (3)
C6—C1—C10—N3177.75 (18)C14—C13—C18—C171.1 (3)
N1—N2—C11—N30.4 (2)C12—C13—C18—C17179.43 (19)
N1—N2—C11—S1178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N40.932.363.047 (3)130
C14—H14···S10.932.723.130 (3)108
C19—H19B···O3i0.962.533.384 (2)148
C21—H21B···O1ii0.962.433.331 (3)156
C19—H19C···Cg3iii0.963.304.057 (3)137
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z+2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H22N4O6S
Mr458.49
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.6762 (17), 8.9289 (18), 13.735 (3)
α, β, γ (°)94.50 (3), 90.82 (3), 90.47 (3)
V3)1060.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.957, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6899, 3720, 3102
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 1.19
No. of reflections3720
No. of parameters295
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.56

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N40.932.363.047 (3)130.00
C14—H14···S10.932.723.130 (3)108.00
C19—H19B···O3i0.962.533.384 (2)148.00
C21—H21B···O1ii0.962.433.331 (3)156.00
C19—H19C···Cg3iii0.963.304.057 (3)137.00
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z+2; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank Guiyang College (grant No. 2008012) for financial support.

References

First citationKarabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521–529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds