organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,3Z)-3,4-Di­hydro-2H-1,4-benzo­thia­zine-2,3-dione dioxime dihydrate

aDepartment of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: alikakanejadifard@yahoo.com

(Received 19 July 2008; accepted 23 July 2008; online 31 July 2008)

In the mol­ecule of the title compound, C8H11N3O4S, the thia­zine ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Kakanejadifard, Niknam et al. (2007[Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753-2756.]); Kakanejadifard, Saniei et al. (2007[Kakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem. 44, 717-718.]); Kakanejadifard & Niknam (2006[Kakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem. 80, 1645-1649.]); Kakanejadifard & Amani (2008[Kakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512.]). For general background, see: Jones et al. (1961[Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62-66.]); Schrauzer & Kohnle (1964[Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056-3063.]); Yari et al. (2006[Yari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167-173.]); Hashemi et al. (2006[Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci. 21, 1297-1301.]); Ghiasvand et al. (2004[Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287-292.], 2005[Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781-785.]); Kakanejadifard, Niknam & Zabardasti (2007[Kakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem. 60, 677-681.]); Gok & Kantekin (1997[Gok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413-2420.]); Hughes (1981[Hughes, M. N. (1981). The Inorganic Chemistry of Biological Processes. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O2S·2H2O

  • Mr = 245.26

  • Orthorhombic, P b c a

  • a = 9.1636 (18) Å

  • b = 9.8195 (18) Å

  • c = 24.165 (4) Å

  • V = 2174.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 120 (2) K

  • 0.5 × 0.5 × 0.1 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 0.974

  • 15018 measured reflections

  • 2337 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.107

  • S = 1.02

  • 2337 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N11i 0.85 2.11 2.931 (2) 162
O1W—H1WA⋯N13i 0.85 2.62 3.225 (2) 129
O1W—H1WB⋯O2Wi 0.85 2.00 2.845 (2) 171
O2W—H2WA⋯N13ii 0.85 2.02 2.853 (3) 168
N4—H4⋯O14 0.87 2.08 2.493 (2) 108
O2W—H2WB⋯O1W 0.85 1.94 2.780 (2) 171
O12—H12⋯O2Wiii 0.82 1.89 2.699 (2) 171
O14—H14⋯O1W 0.82 1.85 2.673 (2) 179
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have been interested in the synthesis and chemical behavior of vic-dioximes, in the past decade. In our investigations, the reaction of amines with dichloroglyoxime or cyanogendi-N-oxide resulted in various symmetrically substituted diaminoglyoxime derivatives, in which some of them were quite suitable to act, as donor species, towards some transition metal ions (Kakanejadifard, Niknam et al., 2007; Kakanejadifard, Saniei et al., 2007; Kakanejadifard & Niknam, 2006; Kakanejadifard & Amani, 2008). Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones et al., 1961; Schrauzer & Kohnle, 1964; Yari et al., 2006; Hashemi et al., 2006; Ghiasvand et al., 2004; Ghiasvand et al., 2005; Kakanejadifard, Niknam & Zabardasti, 2007). vic-Dioximes, containing mildly acidic hydroxyl groups and slightly basic nitrogen atoms, are amphoteric and their transition metal complexes have been widely investigated as analytical reagents (Gok & Kantekin, 1997), and models for biological systems such as vitamin B12 (Hughes, 1981). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges. Ring A (S1/N4/C2/C3/C5/C6) adopts envelope conformation, with C2 atom displaced by 0.248 (3) Å from the plane of the other ring atoms. Ring B (C5–C10) is, of course, planar.

In the crystal structure, intermolecular N—H···O, O—H···O and O—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Kakanejadifard, Niknam et al. (2007); Kakanejadifard, Saniei et al. (2007); Kakanejadifard & Niknam (2006); Kakanejadifard & Amani (2008). For general background, see: Jones et al. (1961); Schrauzer & Kohnle (1964); Yari et al. (2006); Hashemi et al. (2006); Ghiasvand et al. (2004, 2005); Kakanejadifard, Niknam & Zabardasti (2007); Gok & Kantekin (1997); Hughes (1981).

Experimental top

For the preparation of the title compound, a solution of NaHCO3 (0.05 g, 0.6 mmol) in aqueous EtOH (10 ml) was added to a magnetically stirred solution of dicholoroglyoxime (1.57 g, 10 mmol) in aqueous EtOH (15 ml) and a solution of 2-aminothiophenole (1.25 g, 10 mmol) in EtOH (15 ml) at room temperature. The solution was stirred for 4 h and then the mixture was filtered. The filtrate was placed at room temperature for 24 h. The gray precipitate was removed by filtration and precipitate was washed with cold THF. It was recrystallized from 2-propanol in one week (yield; 0.31 g, 74.2%, m.p. 492 K).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H = 0.8691 Å (for NH), O—H = 0.8499–0.8501 Å (for H2O) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H, x = 0.95 for NH H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.
(2Z,3Z)-3,4-Dihydro-2H-1,4-benzothiazine-2,3-dione dioxime dihydrate top
Crystal data top
C8H7N3O2S·2H2OF(000) = 1024
Mr = 245.26Dx = 1.498 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 910 reflections
a = 9.1636 (18) Åθ = 2.5–26.3°
b = 9.8195 (18) ŵ = 0.30 mm1
c = 24.165 (4) ÅT = 120 K
V = 2174.4 (7) Å3Plate, yellow
Z = 80.5 × 0.5 × 0.1 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2337 independent reflections
Radiation source: fine-focus sealed tube1482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.859, Tmax = 0.974k = 1212
15018 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
2337 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H7N3O2S·2H2OV = 2174.4 (7) Å3
Mr = 245.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1636 (18) ŵ = 0.30 mm1
b = 9.8195 (18) ÅT = 120 K
c = 24.165 (4) Å0.5 × 0.5 × 0.1 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1482 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.974Rint = 0.082
15018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
2337 reflectionsΔρmin = 0.25 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18557 (6)0.97098 (6)0.44569 (2)0.02751 (18)
O1W0.74924 (16)1.21073 (15)0.24961 (6)0.0294 (4)
H1WA0.75671.15440.22300.035*
H1WB0.82981.25230.25390.035*
O2W0.50348 (16)1.37490 (17)0.23976 (6)0.0302 (4)
H2WA0.52011.44200.21850.036*
H2WB0.58381.33170.24110.036*
O120.07401 (16)0.93917 (17)0.34431 (6)0.0326 (4)
H120.04230.91580.31400.049*
O140.61786 (17)1.16110 (16)0.34627 (6)0.0316 (4)
H140.65701.17570.31630.047*
N40.4660 (2)1.14780 (19)0.43170 (7)0.0231 (4)
H40.54891.18950.42760.022*
N110.20659 (19)1.00628 (19)0.33728 (8)0.0268 (5)
N130.48394 (19)1.09374 (19)0.33772 (8)0.0236 (4)
C20.2680 (2)1.0265 (2)0.38436 (9)0.0223 (5)
C30.4132 (2)1.0922 (2)0.38433 (9)0.0211 (5)
C50.4075 (2)1.1389 (2)0.48497 (9)0.0212 (5)
C60.2847 (2)1.0617 (2)0.49653 (9)0.0228 (5)
C70.2320 (2)1.0540 (2)0.55071 (9)0.0269 (5)
H70.15001.00140.55840.032*
C80.3006 (3)1.1236 (2)0.59269 (9)0.0289 (6)
H80.26511.11830.62870.035*
C90.4222 (3)1.2015 (2)0.58121 (10)0.0302 (6)
H90.46831.24930.60940.036*
C100.4756 (3)1.2084 (2)0.52783 (9)0.0269 (6)
H100.55831.26020.52050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0211 (3)0.0357 (3)0.0257 (3)0.0062 (3)0.0008 (2)0.0020 (3)
O1W0.0243 (9)0.0344 (9)0.0295 (9)0.0021 (7)0.0050 (7)0.0041 (8)
O2W0.0251 (8)0.0325 (9)0.0329 (10)0.0035 (7)0.0048 (7)0.0067 (8)
O120.0237 (9)0.0466 (11)0.0275 (9)0.0140 (8)0.0027 (7)0.0017 (8)
O140.0269 (9)0.0398 (10)0.0282 (9)0.0107 (8)0.0022 (7)0.0030 (8)
N40.0217 (9)0.0262 (11)0.0213 (10)0.0026 (8)0.0009 (8)0.0002 (8)
N110.0201 (10)0.0316 (11)0.0287 (11)0.0038 (8)0.0016 (8)0.0025 (9)
N130.0209 (10)0.0249 (10)0.0251 (10)0.0049 (8)0.0011 (8)0.0008 (8)
C20.0200 (11)0.0249 (11)0.0220 (12)0.0024 (10)0.0004 (9)0.0010 (10)
C30.0215 (11)0.0200 (11)0.0219 (12)0.0014 (10)0.0025 (9)0.0018 (10)
C50.0220 (11)0.0198 (11)0.0218 (12)0.0067 (10)0.0003 (9)0.0017 (10)
C60.0210 (12)0.0239 (12)0.0236 (13)0.0061 (9)0.0015 (9)0.0033 (9)
C70.0224 (11)0.0316 (14)0.0268 (13)0.0050 (10)0.0023 (10)0.0060 (11)
C80.0320 (13)0.0327 (13)0.0219 (13)0.0095 (11)0.0042 (11)0.0021 (11)
C90.0413 (15)0.0251 (13)0.0243 (14)0.0050 (11)0.0033 (11)0.0024 (10)
C100.0310 (13)0.0209 (12)0.0289 (14)0.0006 (10)0.0003 (11)0.0019 (10)
Geometric parameters (Å, º) top
S1—C21.750 (2)C2—C31.479 (3)
S1—C61.769 (2)C5—C61.385 (3)
S1—C52.785 (2)C5—C101.388 (3)
S1—C32.823 (2)C6—C71.398 (3)
O12—N111.393 (2)C7—C81.376 (3)
O12—H120.8200C7—H70.9300
O14—N131.409 (2)C8—C91.380 (3)
O14—C32.195 (3)C8—H80.9300
O14—H140.8200C9—C101.381 (3)
N4—C31.357 (3)C9—H90.9300
N4—C51.397 (3)C10—H100.9300
N4—H40.8691O1W—H1WA0.8501
N11—C21.285 (3)O1W—H1WB0.8499
N11—C32.364 (3)O2W—H2WA0.8500
N13—C31.299 (3)O2W—H2WB0.8500
C2—S1—C6102.11 (11)C10—C5—S1150.86 (16)
C2—S1—C577.83 (9)N4—C5—S190.18 (13)
C6—S1—C376.88 (9)C9—C5—S1121.39 (10)
C5—S1—C352.39 (6)C7—C5—S162.11 (8)
N11—O12—H12109.5C3—C5—S164.59 (7)
N13—O14—H14109.5C6—C5—C5i85.42 (14)
C3—O14—H14142.8C10—C5—C5i90.62 (14)
C3—N4—C5127.96 (19)N4—C5—C5i93.28 (14)
C3—N4—H4113.8C9—C5—C5i88.25 (10)
C5—N4—H4118.1C7—C5—C5i84.92 (10)
C2—N11—O12110.30 (18)C3—C5—C5i92.99 (10)
O12—N11—C3143.99 (15)S1—C5—C5i87.74 (9)
C3—N13—O14108.23 (17)C5—C6—C7120.0 (2)
N11—C2—C3117.44 (19)C5—C6—S1123.56 (17)
N11—C2—S1120.86 (17)C7—C6—S1116.47 (17)
C3—C2—S1121.64 (16)C5—C6—C960.51 (13)
N13—C3—N4123.3 (2)C7—C6—C959.46 (14)
N13—C3—C2117.02 (19)S1—C6—C9175.77 (13)
N4—C3—C2119.71 (19)C8—C7—C6120.4 (2)
N4—C3—O1485.70 (14)C6—C7—C990.21 (16)
C2—C3—O14154.59 (16)C8—C7—C590.50 (16)
N13—C3—N1189.24 (14)C9—C7—C560.34 (10)
N4—C3—N11146.56 (17)C8—C7—H7119.8
O14—C3—N11126.34 (11)C6—C7—H7119.8
N13—C3—C5149.31 (17)C9—C7—H7150.0
C2—C3—C593.51 (14)C5—C7—H7149.7
O14—C3—C5111.88 (11)C7—C8—C9119.8 (2)
N11—C3—C5121.44 (11)C7—C8—H8120.1
N13—C3—S1145.97 (16)C9—C8—H8120.1
N4—C3—S189.42 (13)C8—C9—C10120.1 (2)
O14—C3—S1168.89 (11)C10—C9—C790.00 (16)
N11—C3—S160.67 (7)C8—C9—C590.44 (16)
C5—C3—S163.02 (7)C7—C9—C560.37 (9)
N13—C3—C9i90.05 (14)C8—C9—C660.40 (14)
N4—C3—C9i88.63 (13)C10—C9—C659.67 (14)
C2—C3—C9i91.67 (14)C8—C9—C3i80.63 (14)
O14—C3—C9i89.14 (9)C10—C9—C3i96.59 (15)
N11—C3—C9i99.92 (10)C7—C9—C3i83.30 (9)
C5—C3—C9i85.70 (8)C5—C9—C3i92.62 (9)
S1—C3—C9i80.76 (7)C6—C9—C3i87.82 (8)
C6—C5—C10118.9 (2)C8—C9—H9120.0
C6—C5—N4122.1 (2)C10—C9—H9120.0
C10—C5—N4119.0 (2)C7—C9—H9150.0
C6—C5—C989.45 (15)C5—C9—H9149.6
N4—C5—C9148.43 (17)C6—C9—H9179.4
C10—C5—C788.76 (15)C3i—C9—H992.8
N4—C5—C7152.27 (17)C9—C10—C5120.9 (2)
C9—C5—C759.29 (10)C9—C10—H10119.5
C6—C5—C396.54 (15)C5—C10—H10119.5
C10—C5—C3144.53 (17)H1WA—O1W—H1WB109.6
C9—C5—C3173.96 (13)H2WA—O2W—H2WB104.7
C7—C5—C3126.70 (12)
O12—N11—C2—C3177.69 (18)C2—S1—C5—C9170.77 (13)
O12—N11—C2—S10.5 (3)C6—S1—C5—C91.59 (17)
C3—N11—C2—S1177.2 (3)C3—S1—C5—C9179.04 (14)
C6—S1—C2—N11164.88 (19)C2—S1—C5—C7171.89 (11)
C5—S1—C2—N11168.1 (2)C6—S1—C5—C70.47 (18)
C3—S1—C2—N11177.1 (3)C3—S1—C5—C7179.84 (10)
C6—S1—C2—C318.0 (2)C2—S1—C5—C38.27 (10)
C5—S1—C2—C314.80 (18)C6—S1—C5—C3179.4 (2)
O14—N13—C3—N40.1 (3)C2—S1—C5—C5i102.67 (11)
O14—N13—C3—C2179.59 (18)C6—S1—C5—C5i85.0 (2)
O14—N13—C3—N11171.56 (13)C3—S1—C5—C5i94.39 (10)
O14—N13—C3—C56.9 (4)C10—C5—C6—C70.4 (3)
O14—N13—C3—S1161.9 (2)N4—C5—C6—C7178.8 (2)
O14—N13—C3—C9i88.52 (14)C9—C5—C6—C70.5 (2)
C5—N4—C3—N13172.2 (2)C3—C5—C6—C7179.75 (18)
C5—N4—C3—C28.1 (3)S1—C5—C6—C7179.2 (3)
C5—N4—C3—O14172.3 (2)C5i—C5—C6—C787.8 (2)
C5—N4—C3—N1123.0 (4)C10—C5—C6—S1178.75 (16)
C5—N4—C3—S12.3 (2)N4—C5—C6—S12.1 (3)
C5—N4—C3—C9i83.1 (2)C9—C5—C6—S1178.65 (15)
N11—C2—C3—N1316.8 (3)C7—C5—C6—S1179.2 (3)
S1—C2—C3—N13160.36 (17)C3—C5—C6—S10.57 (19)
N11—C2—C3—N4162.9 (2)C5i—C5—C6—S193.07 (16)
S1—C2—C3—N419.9 (3)C10—C5—C6—C90.10 (16)
N11—C2—C3—O1416.2 (5)N4—C5—C6—C9179.3 (2)
S1—C2—C3—O14160.9 (3)C7—C5—C6—C90.5 (2)
S1—C2—C3—N11177.2 (3)C3—C5—C6—C9179.22 (13)
N11—C2—C3—C5166.47 (19)S1—C5—C6—C9178.65 (15)
S1—C2—C3—C516.35 (19)C5i—C5—C6—C988.29 (10)
N11—C2—C3—S1177.2 (3)C2—S1—C6—C57.6 (2)
N11—C2—C3—C9i107.7 (2)C3—S1—C6—C50.51 (17)
S1—C2—C3—C9i69.45 (17)C2—S1—C6—C7171.56 (17)
N13—O14—C3—N4179.9 (2)C5—S1—C6—C7179.2 (3)
N13—O14—C3—C20.9 (4)C3—S1—C6—C7179.71 (18)
N13—O14—C3—N1110.50 (17)C5—C6—C7—C80.6 (3)
N13—O14—C3—C5176.2 (2)S1—C6—C7—C8178.67 (17)
N13—O14—C3—S1115.7 (6)C9—C6—C7—C80.03 (17)
N13—O14—C3—C9i91.21 (18)C5—C6—C7—C90.5 (2)
C2—N11—C3—N13165.1 (3)S1—C6—C7—C9178.70 (13)
O12—N11—C3—N13161.4 (2)S1—C6—C7—C5179.2 (3)
C2—N11—C3—N427.6 (3)C9—C6—C7—C50.5 (2)
O12—N11—C3—N431.3 (4)C6—C5—C7—C8179.5 (3)
O12—N11—C3—C23.7 (3)C10—C5—C7—C80.11 (18)
C2—N11—C3—O14171.4 (3)N4—C5—C7—C8178.2 (3)
O12—N11—C3—O14167.7 (2)C9—C5—C7—C80.13 (13)
C2—N11—C3—C515.9 (2)C3—C5—C7—C8179.20 (15)
O12—N11—C3—C519.6 (3)S1—C5—C7—C8179.02 (15)
C2—N11—C3—S11.7 (2)C5i—C5—C7—C890.85 (15)
O12—N11—C3—S12.0 (2)C10—C5—C7—C6179.6 (3)
C2—N11—C3—C9i75.1 (2)N4—C5—C7—C62.3 (4)
O12—N11—C3—C9i71.4 (3)C9—C5—C7—C6179.4 (2)
C2—S1—C3—N1332.4 (3)C3—C5—C7—C60.3 (2)
C6—S1—C3—N13165.8 (3)S1—C5—C7—C60.50 (19)
C5—S1—C3—N13166.0 (3)C5i—C5—C7—C689.6 (2)
C2—S1—C3—N4162.8 (3)C6—C5—C7—C9179.4 (2)
C6—S1—C3—N40.88 (13)C10—C5—C7—C90.24 (13)
C5—S1—C3—N41.15 (11)N4—C5—C7—C9178.4 (4)
C6—S1—C3—C2161.9 (2)C3—C5—C7—C9179.07 (15)
C5—S1—C3—C2161.6 (2)S1—C5—C7—C9178.89 (10)
C2—S1—C3—O14133.4 (7)C5i—C5—C7—C990.98 (10)
C6—S1—C3—O1464.8 (6)C6—C7—C8—C90.1 (3)
C5—S1—C3—O1465.0 (6)C5—C7—C8—C90.2 (2)
C2—S1—C3—N111.56 (18)C7—C8—C9—C100.6 (3)
C6—S1—C3—N11163.45 (10)C7—C8—C9—C50.2 (2)
C5—S1—C3—N11163.18 (10)C7—C8—C9—C60.03 (17)
C2—S1—C3—C5161.6 (2)C7—C8—C9—C3i92.8 (2)
C6—S1—C3—C50.27 (9)C6—C7—C9—C8180.0 (3)
C2—S1—C3—C9i108.5 (2)C5—C7—C9—C8179.7 (3)
C6—S1—C3—C9i89.59 (9)C8—C7—C9—C10179.5 (3)
C5—S1—C3—C9i89.86 (8)C6—C7—C9—C100.55 (18)
C3—N4—C5—C63.4 (3)C5—C7—C9—C100.24 (13)
C3—N4—C5—C10177.4 (2)C8—C7—C9—C5179.7 (3)
C3—N4—C5—C9177.9 (2)C6—C7—C9—C50.31 (12)
C3—N4—C5—C74.8 (5)C8—C7—C9—C6180.0 (3)
C3—N4—C5—S12.3 (2)C5—C7—C9—C60.31 (12)
C3—N4—C5—C5i90.1 (2)C8—C7—C9—C3i82.9 (2)
N13—C3—C5—C6164.3 (3)C6—C7—C9—C3i97.18 (14)
N4—C3—C5—C6177.1 (3)C5—C7—C9—C3i96.88 (9)
C2—C3—C5—C69.93 (18)C6—C5—C9—C80.44 (18)
O14—C3—C5—C6168.81 (14)C10—C5—C9—C8179.4 (3)
N11—C3—C5—C617.53 (18)N4—C5—C9—C8178.4 (3)
S1—C3—C5—C60.34 (11)C7—C5—C9—C80.13 (13)
C9i—C3—C5—C681.48 (13)S1—C5—C9—C81.28 (18)
N13—C3—C5—C1016.7 (5)C5i—C5—C9—C885.00 (15)
N4—C3—C5—C103.9 (3)C6—C5—C9—C10179.8 (3)
C2—C3—C5—C10169.0 (3)N4—C5—C9—C101.0 (3)
O14—C3—C5—C1012.2 (3)C7—C5—C9—C10179.5 (3)
N11—C3—C5—C10161.4 (2)S1—C5—C9—C10179.3 (3)
S1—C3—C5—C10178.6 (3)C5i—C5—C9—C1094.4 (2)
C9i—C3—C5—C1099.5 (3)C6—C5—C9—C70.31 (12)
N13—C3—C5—N412.8 (3)C10—C5—C9—C7179.5 (3)
C2—C3—C5—N4173.0 (3)N4—C5—C9—C7178.5 (3)
O14—C3—C5—N48.3 (2)S1—C5—C9—C71.15 (10)
N11—C3—C5—N4165.4 (3)C5i—C5—C9—C785.13 (10)
S1—C3—C5—N4177.4 (3)C10—C5—C9—C6179.8 (3)
C9i—C3—C5—N495.6 (2)N4—C5—C9—C6178.8 (4)
N13—C3—C5—C7164.5 (3)C7—C5—C9—C60.31 (12)
N4—C3—C5—C7177.2 (3)S1—C5—C9—C60.84 (9)
C2—C3—C5—C79.77 (19)C5i—C5—C9—C685.44 (14)
O14—C3—C5—C7168.97 (12)C6—C5—C9—C3i81.08 (13)
N11—C3—C5—C717.37 (19)C10—C5—C9—C3i98.7 (2)
S1—C3—C5—C70.18 (11)N4—C5—C9—C3i97.8 (3)
C9i—C3—C5—C781.64 (13)C7—C5—C9—C3i80.77 (9)
N13—C3—C5—S1164.6 (3)S1—C5—C9—C3i81.92 (11)
N4—C3—C5—S1177.4 (3)C5i—C5—C9—C3i4.36 (9)
C2—C3—C5—S19.60 (11)C5—C6—C9—C8179.5 (2)
O14—C3—C5—S1169.15 (11)C7—C6—C9—C80.03 (17)
N11—C3—C5—S117.20 (10)C5—C6—C9—C100.11 (16)
C9i—C3—C5—S181.81 (7)C7—C6—C9—C10179.4 (2)
N13—C3—C5—C5i78.6 (3)C5—C6—C9—C7179.5 (2)
N4—C3—C5—C5i91.3 (2)C7—C6—C9—C5179.5 (2)
C2—C3—C5—C5i95.66 (15)C5—C6—C9—C3i99.04 (13)
O14—C3—C5—C5i83.09 (12)C7—C6—C9—C3i80.43 (14)
N11—C3—C5—C5i103.26 (13)C8—C9—C10—C50.7 (3)
S1—C3—C5—C5i86.06 (9)C7—C9—C10—C50.4 (2)
C9i—C3—C5—C5i4.25 (9)C6—C9—C10—C50.11 (16)
C2—S1—C5—C6172.4 (2)C3i—C9—C10—C583.7 (2)
C3—S1—C5—C6179.4 (2)C6—C5—C10—C90.2 (3)
C2—S1—C5—C10170.1 (3)N4—C5—C10—C9179.4 (2)
C6—S1—C5—C102.2 (3)C7—C5—C10—C90.4 (2)
C3—S1—C5—C10178.4 (3)C3—C5—C10—C9178.6 (2)
C2—S1—C5—N49.39 (13)S1—C5—C10—C91.1 (4)
C6—S1—C5—N4178.2 (3)C5i—C5—C10—C985.3 (2)
C3—S1—C5—N41.12 (11)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N11ii0.852.112.931 (2)162
O1W—H1WA···N13ii0.852.623.225 (2)129
O1W—H1WB···O2Wii0.852.002.845 (2)171
O2W—H2WA···N13iii0.852.022.853 (3)168
N4—H4···O140.872.082.493 (2)108
O2W—H2WB···O1W0.851.942.780 (2)171
O12—H12···O2Wiv0.821.892.699 (2)171
O14—H14···O1W0.821.852.673 (2)179
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H7N3O2S·2H2O
Mr245.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)9.1636 (18), 9.8195 (18), 24.165 (4)
V3)2174.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.5 × 0.5 × 0.1
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.859, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15018, 2337, 1482
Rint0.082
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.107, 1.02
No. of reflections2337
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.25

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N11i0.852.112.931 (2)162
O1W—H1WA···N13i0.852.623.225 (2)129
O1W—H1WB···O2Wi0.852.002.845 (2)171
O2W—H2WA···N13ii0.852.022.853 (3)168
N4—H4···O140.872.082.493 (2)108
O2W—H2WB···O1W0.851.942.780 (2)171
O12—H12···O2Wiii0.821.892.699 (2)171
O14—H14···O1W0.821.852.673 (2)179
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the Research Grant Council of Lorestan University for financial support.

References

First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781–785.  CAS Google Scholar
First citationGok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413–2420.  CrossRef CAS Web of Science Google Scholar
First citationHashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci. 21, 1297–1301.  Web of Science CrossRef Google Scholar
First citationHughes, M. N. (1981). The Inorganic Chemistry of Biological Processes. New York: Wiley.  Google Scholar
First citationJones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62–66.  CrossRef CAS Google Scholar
First citationKakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem. 80, 1645–1649.  CAS Google Scholar
First citationKakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753–2756.  Web of Science CrossRef CAS Google Scholar
First citationKakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem. 60, 677–681.  Web of Science CrossRef CAS Google Scholar
First citationKakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem. 44, 717–718.  CrossRef CAS Google Scholar
First citationSchrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056–3063.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167–173.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds