organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1613-o1614

X-ray and computational structural study of (E)-2-(4-chloro­phenyl­imino­meth­yl)-4-meth­oxy­phenol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 22 July 2008; accepted 24 July 2008; online 31 July 2008)

In the mol­ecule of the title compound, C14H12ClNO2, the two aromatic rings are oriented at a dihedral angle of 5.92 (7)°. An intra­molecular O—H⋯N hydrogen bond results in the formation of a nearly planar six-membered ring, which is oriented at dihedral angles of 1.55 (4) and 5.95 (4)° with respect to the phenol and chlorophenyl rings, respectively. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Özek et al. (2007[Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]); Odabaşoğlu, Büyükgüngör et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Odabaşoğlu, Arslan et al. (2007[Odabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3654.]); Albayrak et al. (2005[Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O (2005). Acta Cryst. E61, o423-o424.]); Elerman et al. (1995[Elerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344-2346.]). For general background, see: Friesner (2005[Friesner, R. A. (2005). Proc. Natl Acad. Sci. USA, 102, 6648-6653.]); Liu et al. (2004[Liu, H., Bandeira, N. A. G., Calhorda, M. J., Drew, M. G. B., Felix, V., Novosad, J., De Biani, F. F. & Zanello, P. (2004). J. Organomet. Chem. 689, 2808-2819.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO2

  • Mr = 261.70

  • Monoclinic, P 21 /c

  • a = 21.2642 (19) Å

  • b = 4.7101 (3) Å

  • c = 12.2175 (12) Å

  • β = 93.361 (8)°

  • V = 1221.56 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.68 × 0.44 × 0.21 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.825, Tmax = 0.925

  • 10205 measured reflections

  • 2364 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.00

  • 2364 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (3) 1.79 (3) 2.6210 (18) 157 (2)
C7—H7C⋯O2i 0.96 2.56 3.495 (2) 164
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Selected geometric parameters (Å, °) calculated with X-RAY, AM1, PM3, HF and DFT

Parameters X-RAY AM1 PM3 HFa DFT/B3LYPa
C8—N1 1.276 (19) 1.292 1.302 1.262 1.293
C2—O1 1.355418) 1.368 1.357 1.336 1.344
C1—C6 1.396 (2) 1.406 1.401 1.393 1.406
C1—C8 1.448 (2) 1.466 1.459 1.467 1.449
C1—C2 1.397 (2) 1.408 1.411 1.402 1.423
N1—C9 1.418 (19) 1.409 1.431 1.408 1.406
C9—C10 1.384 (2) 1.414 1.401 1.391 1.403
C12—Cl1 1.734 (15) 1.699 1.684 1.743 1.758
C5—O2 1.3756 (18) 1.385 1.386 1.355 1.371
C11—C12—Cl1 120.72 (12) 119.860 119.505 119.595 119.538
C6—C5—O2 115.56 (14) 114.847 113.926 116.374 116.232
C6—C1—C8 119.18 (13) 116.153 118.078 118.004 119.327
C9—N1 —C8 121.22 (13) 121.780 122.176 120.342 121.253
C14—C9—N1 124.68 (13) 123.445 122.813 122.881 123.392
N1—C8—C1 122.35 (14) 123.800 119.635 123.408 122.250
N1—C9—C10 117.10 (13) 117.991 116.829 118.015 117.770
C8—C1—C2—O1 −0.9 (2) −0.050 −0.030 −0.111 −0.085
C6—C5—O2—C7 −172.96 (15) 179.476 179.983 179.698 −179.874
C10—C9—N1—C8 −172.84 (13) −149.450 179.999 62.793 −147.450
N1—C8—C1—C6 177.90 (14) −177.484 −0.066 −179.307 −179.448
C1—C8—N1—C9 −178.85 (13) −179.157 179.991 −178.540 −177.303
Notes: (a) 6-31G(d,p).

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and GAUSSIAN (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT 06492, USA.]).

Supporting information


Comment top

The present work is part of a structural study of Schiff bases Özek et al., 2007; Odabaşoğlu, Büyükgüngör et al., 2007; Odabaşoğlu, Arslan et al., 2007). We report herein the crystal structure of the title compound, (I).

In general, O-hydroxy Schiff bases exhibit two possible tautomeric forms, the phenol-imine (or benzenoid) and keto-amine (or quinoid) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are possible: O-H···N in benzenoid and N-H···O in quinoid tautomers. The H atom in (I) is located on atom O1, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C2-O1, C8-N1, C1-C8 and C1-C2 bonds (Fig. 1 and Table 2). The O1-C2 bond has single-bond character, whereas the N1-C8 bond has a high degree of double-bond character as in 2-(3-methoxysalicylideneamino)-1H-benzimidazole- monohydrate, (II) [where the corresponding values are C-O = 1.357 (2) Å, C-N = 1.285 (2) Å, Albayrak et al., 2005]. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in (I) caused by the planarity of the molecule; the dihedral angle between rings A (C1-C6) and B (C9-C14) is 5.92 (7)°. The intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a nearly planar six-membered ring C (O1/H1/N1/C1/C2/C8), in which it is oriented with respect to rings A and B at dihedral angles of A/C = 1.55 (4)° and B/C = 5.95 (4)°. So, it is coplanar with the adjacent ring A. It generates an S(6) ring motif. The O1···N1 [2.621 (2) Å] distance is comparable to those observed for analogous ones in N-(2-hydroxyphenyl)salicylaldimine, (III) [2.675 (7) Å; Elerman et al., 1995] and in three(E)-2-[(bromophenyl)iminomethyl]-4-methoxyphenols, (IV) [2.603 (2), 2.638 (7) and 2.577 (4) Å;Özek et al., 2007].

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Ab-initio Hartree-Fock (HF), density-functional theory (DFT) and semi-empirical (AM1 and PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles together with the torsion angles are compared with the obtained ones from semi-empirical, ab-initio HF and DFT/B3LYP methods (Table 2). We observe an acceptable general agreement between them. Although the DFT molecular orbital theory was considered as the most accurate method for geometry optimization for free and complex ligands (Friesner, 2005; Liu et al., 2004), the HF method led to better results in regard to the bond lengths and angles.

Related literature top

For related literature, see: Özek et al. (2007); Odabaşoğlu, Büyükgüngör et al. (2007); Odabaşoğlu, Arslan et al. (2007); Albayrak et al. (2005); Elerman et al. (1995). For general background, see: Friesner (2005); Liu et al. (2004).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 5-methoxysalicylaldehyde (0.5 g 3.3 mmol) in ethanol (20 ml) and a solution containing 4-chloraniline (0.420 g 3.3 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield; 76%, m.p. 378-379 K).

Refinement top

H1 atom (for OH) was located in difference syntheses and refined isotropically [O-H = 0.88 (3) Å and Uiso(H) = 0.112 (9) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al.,2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of (I) [symmetry codes: (i) 1 - x, y - 1/2, 3/2 - z; (ii) 1 - x, y + 1/2, 3/2 - z]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-2-(4-chlorophenyliminomethyl)-4-methoxyphenol top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10205 reflections
a = 21.2642 (19) Åθ = 1.7–27.2°
b = 4.7101 (3) ŵ = 0.31 mm1
c = 12.2175 (12) ÅT = 296 K
β = 93.361 (8)°Prismatic long stick, red
V = 1221.56 (18) Å30.68 × 0.44 × 0.21 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
2364 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.080
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 2626
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 55
Tmin = 0.825, Tmax = 0.925l = 1414
10205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H12ClNO2V = 1221.56 (18) Å3
Mr = 261.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.2642 (19) ŵ = 0.31 mm1
b = 4.7101 (3) ÅT = 296 K
c = 12.2175 (12) Å0.68 × 0.44 × 0.21 mm
β = 93.361 (8)°
Data collection top
Stoe IPDSII
diffractometer
2364 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1789 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.925Rint = 0.080
10205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.20 e Å3
2364 reflectionsΔρmin = 0.20 e Å3
167 parameters
Special details top

Experimental. 225 frames, detector distance = 120 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03208 (2)1.40379 (9)0.66121 (4)0.06631 (18)
O10.26185 (6)0.2746 (3)0.35438 (10)0.0677 (4)
H10.2404 (12)0.393 (5)0.394 (2)0.112 (9)*
O20.42346 (6)0.2199 (3)0.66813 (10)0.0676 (4)
N10.21631 (6)0.5615 (3)0.51562 (10)0.0455 (3)
C10.29911 (7)0.2216 (3)0.54240 (12)0.0428 (3)
C20.30182 (7)0.1541 (3)0.43144 (12)0.0480 (4)
C30.34597 (8)0.0395 (4)0.39932 (13)0.0575 (4)
H30.34780.08410.32540.069*
C40.38738 (8)0.1674 (4)0.47512 (14)0.0551 (4)
H40.41700.29640.45210.066*
C50.38493 (7)0.1042 (3)0.58541 (13)0.0493 (4)
C60.34078 (7)0.0873 (3)0.61831 (13)0.0484 (3)
H60.33870.12780.69250.058*
C70.47390 (9)0.3918 (4)0.63688 (19)0.0753 (6)
H7A0.50120.28190.59360.090*
H7B0.45760.54990.59450.090*
H7C0.49710.46040.70130.090*
C80.25442 (7)0.4252 (3)0.58089 (12)0.0461 (3)
H80.25340.45790.65580.055*
C90.17376 (7)0.7637 (3)0.55533 (12)0.0436 (3)
C100.12943 (7)0.8772 (3)0.48017 (13)0.0522 (4)
H100.12910.81990.40730.063*
C110.08576 (8)1.0737 (3)0.51122 (14)0.0550 (4)
H110.05611.14740.45990.066*
C120.08649 (7)1.1592 (3)0.61875 (14)0.0496 (4)
C130.13070 (8)1.0524 (4)0.69489 (14)0.0557 (4)
H130.13121.11290.76740.067*
C140.17395 (7)0.8564 (3)0.66347 (13)0.0531 (4)
H140.20370.78480.71510.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0617 (3)0.0529 (2)0.0864 (3)0.01245 (18)0.0222 (2)0.0027 (2)
O10.0789 (8)0.0846 (9)0.0392 (6)0.0278 (7)0.0008 (6)0.0003 (6)
O20.0658 (7)0.0785 (8)0.0577 (7)0.0260 (6)0.0028 (6)0.0012 (6)
N10.0478 (7)0.0442 (6)0.0448 (7)0.0018 (5)0.0049 (5)0.0012 (5)
C10.0448 (7)0.0422 (7)0.0418 (8)0.0002 (6)0.0068 (6)0.0005 (6)
C20.0521 (8)0.0535 (9)0.0387 (8)0.0048 (6)0.0045 (7)0.0015 (6)
C30.0654 (10)0.0667 (10)0.0414 (8)0.0101 (8)0.0104 (7)0.0051 (7)
C40.0548 (9)0.0571 (9)0.0545 (10)0.0100 (7)0.0114 (8)0.0039 (7)
C50.0484 (8)0.0499 (8)0.0495 (8)0.0037 (6)0.0014 (7)0.0014 (7)
C60.0531 (8)0.0507 (8)0.0414 (8)0.0036 (7)0.0031 (7)0.0039 (7)
C70.0683 (11)0.0716 (12)0.0849 (14)0.0251 (10)0.0049 (10)0.0002 (10)
C80.0505 (8)0.0467 (8)0.0415 (8)0.0019 (6)0.0060 (7)0.0027 (6)
C90.0439 (7)0.0406 (7)0.0468 (8)0.0016 (6)0.0061 (6)0.0005 (6)
C100.0572 (9)0.0534 (9)0.0458 (9)0.0035 (7)0.0021 (7)0.0005 (7)
C110.0535 (9)0.0532 (9)0.0579 (10)0.0075 (7)0.0002 (7)0.0058 (7)
C120.0464 (8)0.0404 (7)0.0632 (10)0.0002 (6)0.0133 (7)0.0026 (7)
C130.0614 (9)0.0561 (9)0.0500 (9)0.0054 (7)0.0074 (8)0.0058 (7)
C140.0548 (9)0.0558 (9)0.0482 (9)0.0106 (7)0.0002 (7)0.0019 (7)
Geometric parameters (Å, º) top
O1—H10.88 (3)C7—H7C0.9600
C1—C61.396 (2)C8—N11.2763 (19)
C1—C21.397 (2)C8—H80.9300
C1—C81.448 (2)C9—C101.384 (2)
C2—O11.3554 (18)C9—C141.391 (2)
C2—C31.382 (2)C9—N11.4186 (19)
C3—C41.379 (2)C10—C111.380 (2)
C3—H30.9300C10—H100.9300
C4—C51.384 (2)C11—C121.373 (2)
C4—H40.9300C11—H110.9300
C5—O21.3756 (18)C12—C131.378 (2)
C5—C61.379 (2)C12—Cl11.7337 (15)
C6—H60.9300C13—C141.374 (2)
C7—O21.414 (2)C13—H130.9300
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600
C2—O1—H1102.0 (17)O2—C7—H7C109.5
C5—O2—C7117.19 (14)H7A—C7—H7C109.5
C8—N1—C9121.22 (13)H7B—C7—H7C109.5
C6—C1—C2118.74 (14)N1—C8—C1122.35 (14)
C6—C1—C8119.18 (13)N1—C8—H8118.8
C2—C1—C8122.08 (13)C1—C8—H8118.8
O1—C2—C3119.19 (14)C10—C9—C14118.22 (14)
O1—C2—C1121.27 (14)C10—C9—N1117.10 (13)
C3—C2—C1119.54 (14)C14—C9—N1124.68 (13)
C4—C3—C2121.03 (15)C11—C10—C9121.32 (15)
C4—C3—H3119.5C11—C10—H10119.3
C2—C3—H3119.5C9—C10—H10119.3
C3—C4—C5120.05 (15)C12—C11—C10119.31 (14)
C3—C4—H4120.0C12—C11—H11120.3
C5—C4—H4120.0C10—C11—H11120.3
O2—C5—C6115.56 (14)C11—C12—C13120.51 (15)
O2—C5—C4125.11 (15)C11—C12—Cl1120.72 (12)
C6—C5—C4119.33 (14)C13—C12—Cl1118.77 (13)
C5—C6—C1121.29 (14)C14—C13—C12119.87 (15)
C5—C6—H6119.4C14—C13—H13120.1
C1—C6—H6119.4C12—C13—H13120.1
O2—C7—H7A109.5C13—C14—C9120.76 (14)
O2—C7—H7B109.5C13—C14—H14119.6
H7A—C7—H7B109.5C9—C14—H14119.6
C6—C1—C2—O1178.95 (14)C14—C9—C10—C111.0 (2)
C8—C1—C2—O10.9 (2)N1—C9—C10—C11179.50 (14)
C6—C1—C2—C30.9 (2)C9—C10—C11—C120.3 (2)
C8—C1—C2—C3179.23 (14)C10—C11—C12—C130.6 (2)
O1—C2—C3—C4179.82 (16)C10—C11—C12—Cl1179.55 (12)
C1—C2—C3—C40.1 (3)C11—C12—C13—C140.8 (2)
C2—C3—C4—C50.4 (3)Cl1—C12—C13—C14179.40 (12)
C3—C4—C5—O2179.54 (16)C12—C13—C14—C90.0 (2)
C3—C4—C5—C60.0 (2)C10—C9—C14—C130.9 (2)
O2—C5—C6—C1179.51 (14)N1—C9—C14—C13179.70 (14)
C4—C5—C6—C10.9 (2)C1—C8—N1—C9178.85 (13)
C2—C1—C6—C51.4 (2)C10—C9—N1—C8172.84 (13)
C8—C1—C6—C5178.79 (14)C14—C9—N1—C87.7 (2)
C6—C1—C8—N1177.90 (14)C6—C5—O2—C7172.96 (15)
C2—C1—C8—N12.3 (2)C4—C5—O2—C77.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.79 (3)2.6210 (18)157 (2)
C7—H7C···O2i0.962.563.495 (2)164
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO2
Mr261.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)21.2642 (19), 4.7101 (3), 12.2175 (12)
β (°) 93.361 (8)
V3)1221.56 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.68 × 0.44 × 0.21
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.825, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
10205, 2364, 1789
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.00
No. of reflections2364
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al.,2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.79 (3)2.6210 (18)157 (2)
C7—H7C···O2i0.962.563.495 (2)163.5
Symmetry code: (i) x+1, y1/2, z+3/2.
Selected geometric parameters (Å, °) calculated with X-RAY, AM1, PM3, HF and DFT top
ParametersX-RAYAM1PM3HFaDFT/B3LYPa
C8 N11.276 (19)1.2921.3021.2621.293
C2 O11.355418)1.3681.3571.3361.344
C1 C61.396 (2)1.4061.4011.3931.406
C1 C81.448 (2)1.4661.4591.4671.449
C1 C21.397 (2)1.4081.4111.4021.423
N1 C91.418 (19)1.4091.4311.4081.406
C9 C101.384 (2)1.4141.4011.3911.403
C12 Cl11.734 (15)1.6991.6841.7431.758
C5 O21.3756 (18)1.3851.3861.3551.371
C11 C12 Cl1120.72 (12)119.860119.505119.595119.538
C6 C5 O2115.56 (14)114.847113.926116.374116.232
C6 C1 C8119.18 (13)116.153118.078118.004119.327
C9 N1 C8121.22 (13)121.780122.176120.342121.253
C14 C9 N1124.68 (13)123.445122.813122.881123.392
N1 C8 C1122.35 (14)123.800119.635123.408122.250
N1 C9 C10117.10 (13)117.991116.829118.015117.770
C8 C1 C2 O1-0.9 (2)-0.050-0.030-0.111-0.085
C6 C5 O2 C7-172.96 (15)179.476179.983179.698-179.874
C10 C9 N1 C8-172.84 (13)-149.450179.99962.793-147.450
N1 C8 C1 C6177.90 (14)-177.484-0.066-179.307-179.448
C1 C8 N1 C9-178.85 (13)-179.157179.991-178.540-177.303
Notes: (a) 6-31G(d,p).
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationAlbayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O (2005). Acta Cryst. E61, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344–2346.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriesner, R. A. (2005). Proc. Natl Acad. Sci. USA, 102, 6648–6653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT 06492, USA.  Google Scholar
First citationLiu, H., Bandeira, N. A. G., Calhorda, M. J., Drew, M. G. B., Felix, V., Novosad, J., De Biani, F. F. & Zanello, P. (2004). J. Organomet. Chem. 689, 2808–2819.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1613-o1614
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds