metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[chloridocobalt(II)]-μ-5-(8-quinolyloxymeth­yl)tetra­zolato-κ4N5,O,N1:N4]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: hyye@seu.edu.cn

(Received 18 June 2008; accepted 2 July 2008; online 9 July 2008)

In the title compound, [Co(C11H8N5O)Cl]n, the CoII atom is penta­coordinated by one O atom and two N atoms from a 5-(8-quinolyloxymeth­yl)tetra­zolate ligand, one N atom from another symmetry-related ligand, and a Cl atom. The coordination geometry can be described as slightly distorted trigonal–bipyramidal. Adjacent Co atoms are connected by the bridging tetra­zole groups into a chain. The dihedral angle between the quinoline and tetra­zole planes is 21.2 (1)°. The structure involves intra- and inter­chain C—H⋯N hydrogen bonds.

Related literature

For related literature, see: Luo & Ye (2008[Luo, H.-Z. & Ye, H.-Y. (2008). Acta Cryst. E64, o136.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wang & Ye (2007[Wang, G.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, o4410.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C11H8N5O)Cl]

  • Mr = 320.60

  • Monoclinic, P 21 /c

  • a = 7.0289 (11) Å

  • b = 8.4331 (11) Å

  • c = 20.220 (4) Å

  • β = 96.757 (10)°

  • V = 1190.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku SCXmini CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.701, Tmax = 0.798

  • 12192 measured reflections

  • 2846 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.08

  • 2846 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N1i 2.049 (2)
Co1—N4 2.053 (2)
Co1—N5 2.066 (2)
Co1—Cl1 2.2670 (8)
Co1—O1 2.3979 (18)
N1i—Co1—N4 96.46 (9)
N1i—Co1—N5 106.43 (8)
N4—Co1—N5 134.43 (8)
N1i—Co1—Cl1 104.93 (7)
N4—Co1—Cl1 106.62 (7)
N5—Co1—Cl1 104.74 (6)
N1i—Co1—O1 86.22 (8)
N4—Co1—O1 70.65 (7)
N5—Co1—O1 72.16 (7)
Cl1—Co1—O1 168.82 (6)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯N3ii 0.97 2.54 3.292 (4) 135
C8—H8A⋯N2iii 0.93 2.52 3.398 (4) 157
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of 5-substituted tetrazoles because of their multiple coordination modes to metal ions and the construction of novel metal–organic frameworks. (Wang et al., 2005; Xiong et al., 2002). As part of our on going studies of the chemistry of tetrazoles, we have determined the crystal structure of the title compound.

In the title compound, the CoII atom is penta-coordinated by one O atom and two N atoms from an 8-[(tetrazol-5-yl)methoxy]quinoline ligand, by one N atom from another symmetry-related ligand, and by one terminal Cl atom (Fig. 1). The coordination geometry can be described as slightly distorted trigonal–bipyramidal (Table 1), with three N atoms (N4, N5 and N1i) [symmetry code: (i) -x + 1, y + 1/2, -z + 1/2] forming the equatorial palne and the O1 and Cl1 atoms occupying the axial positions. The deviation of the Co1 atom from the equatorial plane is 0.549 (1) Å. The bond angles of N4—Co1—N5, N5—Co1—N1i and N4—Co1—N1i are 134.43 (8), 106.43 (8) and 96.46 (9)°, respectively. Adjacent Co atoms are connected by the bridging tetrazole groups into a chain (Fig. 2). Geometric parameters of the ligand are in normal ranges (Wang & Ye, 2007). The dihedral angle between the quinoline and tetrazole planes is 21.2 (1)°. The structure involves intrachain and interchain C—H···N hydrogen bonds (Fig. 3; Table 2).

Related literature top

For related literature, see: Luo & Ye (2008); Wang et al. (2005); Wang & Ye (2007); Xiong et al. (2002).

Experimental top

8-(1H-Tetrazol-5-yl)methoxy)quinoline was synthesized by using a similar procedure described previously by us (Luo & Ye, 2008). A mixture of the ligand (0.045 g, 0.2 mmol), CoCl2 (0.026 g, 0.2 mmol) and water (1 ml) was sealed in a glass tube and maintained at 383 K. Purple crystals of the title compound suitable for X-ray ananlysis were obtained after 3 d.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. A polyhedral drawing of the chain in the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the a-axis. Dashed lines denote hydrogen bonds. [Symmetry codes: (ii) -x + 1, y - 1/2, -z + 1/2; (iv) x + 1, -y + 1/2, z + 1/2.]
catena-Poly[[chloridocobalt(II)]-µ-5-(8-quinolyloxymethyl)tetrazolato- κ4N5,O,N1:N4] top
Crystal data top
[Co(C11H8N5O)Cl]F(000) = 644
Mr = 320.60Dx = 1.789 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2846 reflections
a = 7.0289 (11) Åθ = 2.6–27.9°
b = 8.4331 (11) ŵ = 1.66 mm1
c = 20.220 (4) ÅT = 293 K
β = 96.757 (10)°Prism, purple
V = 1190.2 (3) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku SCXmini CCD area-detector
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.701, Tmax = 0.798l = 2626
12192 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.5457P]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C11H8N5O)Cl]V = 1190.2 (3) Å3
Mr = 320.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0289 (11) ŵ = 1.66 mm1
b = 8.4331 (11) ÅT = 293 K
c = 20.220 (4) Å0.20 × 0.18 × 0.14 mm
β = 96.757 (10)°
Data collection top
Rigaku SCXmini CCD area-detector
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2385 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.798Rint = 0.047
12192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
2846 reflectionsΔρmin = 0.37 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.19156 (5)0.40223 (4)0.221382 (16)0.02932 (13)
C10.5028 (3)0.1574 (3)0.24542 (12)0.0287 (5)
C20.4852 (4)0.1332 (4)0.17171 (13)0.0380 (6)
H2A0.60970.13910.15560.046*
H2B0.42810.03100.15960.046*
C30.2568 (4)0.2342 (3)0.08430 (11)0.0279 (5)
C40.3194 (4)0.1528 (4)0.03257 (13)0.0376 (6)
H4A0.44030.10650.03750.045*
C50.1997 (4)0.1392 (4)0.02832 (13)0.0404 (7)
H5A0.24240.08410.06360.049*
C60.0216 (4)0.2065 (3)0.03590 (13)0.0369 (6)
H6A0.05530.19780.07640.044*
C70.0466 (4)0.2890 (3)0.01735 (12)0.0303 (5)
C80.2301 (4)0.3590 (4)0.01327 (14)0.0403 (6)
H8A0.31320.35240.02600.048*
C90.2846 (4)0.4360 (4)0.06704 (15)0.0454 (7)
H9A0.40520.48250.06470.054*
C100.1581 (4)0.4453 (4)0.12616 (14)0.0375 (6)
H10A0.19800.49840.16240.045*
C110.0727 (3)0.3037 (3)0.07850 (11)0.0253 (5)
N10.6256 (3)0.0865 (3)0.29043 (10)0.0303 (5)
N20.5887 (3)0.1467 (3)0.34993 (10)0.0362 (5)
N30.4486 (3)0.2482 (3)0.34007 (11)0.0359 (5)
N40.3906 (3)0.2574 (3)0.27357 (10)0.0309 (5)
N50.0151 (3)0.3818 (2)0.13259 (10)0.0272 (4)
Cl10.00233 (11)0.49197 (11)0.29524 (4)0.0531 (2)
O10.3637 (3)0.2596 (2)0.14477 (8)0.0324 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0282 (2)0.0378 (2)0.02076 (19)0.00290 (14)0.00200 (13)0.00415 (14)
C10.0287 (12)0.0331 (13)0.0232 (12)0.0014 (10)0.0014 (9)0.0009 (10)
C20.0440 (16)0.0439 (16)0.0246 (13)0.0178 (12)0.0024 (11)0.0015 (12)
C30.0333 (13)0.0308 (12)0.0183 (11)0.0017 (10)0.0019 (9)0.0010 (10)
C40.0387 (15)0.0451 (15)0.0286 (13)0.0113 (12)0.0018 (11)0.0043 (12)
C50.0511 (17)0.0481 (16)0.0221 (13)0.0060 (13)0.0041 (11)0.0077 (12)
C60.0450 (15)0.0441 (16)0.0197 (12)0.0004 (12)0.0036 (11)0.0027 (11)
C70.0346 (13)0.0333 (13)0.0217 (12)0.0004 (10)0.0026 (10)0.0012 (10)
C80.0356 (15)0.0532 (17)0.0287 (14)0.0039 (12)0.0099 (11)0.0020 (13)
C90.0330 (14)0.063 (2)0.0376 (16)0.0142 (13)0.0065 (12)0.0070 (14)
C100.0343 (14)0.0457 (16)0.0312 (14)0.0101 (12)0.0011 (11)0.0056 (12)
C110.0283 (12)0.0278 (12)0.0189 (11)0.0020 (9)0.0010 (9)0.0001 (9)
N10.0345 (11)0.0343 (11)0.0204 (10)0.0012 (9)0.0031 (8)0.0026 (8)
N20.0473 (14)0.0382 (12)0.0214 (11)0.0021 (10)0.0027 (9)0.0010 (9)
N30.0448 (13)0.0405 (13)0.0216 (10)0.0018 (10)0.0005 (9)0.0005 (9)
N40.0357 (12)0.0329 (11)0.0235 (10)0.0008 (9)0.0012 (9)0.0010 (9)
N50.0286 (10)0.0318 (11)0.0205 (10)0.0008 (8)0.0008 (8)0.0019 (8)
Cl10.0478 (4)0.0800 (6)0.0326 (4)0.0160 (4)0.0090 (3)0.0097 (4)
O10.0347 (10)0.0374 (10)0.0227 (9)0.0098 (7)0.0072 (7)0.0021 (8)
Geometric parameters (Å, º) top
Co1—N1i2.049 (2)C5—H5A0.9300
Co1—N42.053 (2)C6—C71.413 (4)
Co1—N52.066 (2)C6—H6A0.9300
Co1—Cl12.2670 (8)C7—C81.412 (4)
Co1—O12.3979 (18)C7—C111.415 (3)
C1—N11.321 (3)C8—C91.360 (4)
C1—N41.327 (3)C8—H8A0.9300
C1—C21.495 (3)C9—C101.406 (4)
C2—O11.433 (3)C9—H9A0.9300
C2—H2A0.9700C10—N51.322 (3)
C2—H2B0.9700C10—H10A0.9300
C3—C41.366 (3)C11—N51.378 (3)
C3—O11.375 (3)N1—N21.359 (3)
C3—C111.413 (3)N1—Co1ii2.049 (2)
C4—C51.412 (4)N2—N31.302 (3)
C4—H4A0.9300N3—N41.361 (3)
C5—C61.366 (4)
N1i—Co1—N496.46 (9)C7—C6—H6A119.7
N1i—Co1—N5106.43 (8)C8—C7—C6123.4 (2)
N4—Co1—N5134.43 (8)C8—C7—C11117.3 (2)
N1i—Co1—Cl1104.93 (7)C6—C7—C11119.3 (2)
N4—Co1—Cl1106.62 (7)C9—C8—C7119.6 (2)
N5—Co1—Cl1104.74 (6)C9—C8—H8A120.2
N1i—Co1—O186.22 (8)C7—C8—H8A120.2
N4—Co1—O170.65 (7)C8—C9—C10119.8 (3)
N5—Co1—O172.16 (7)C8—C9—H9A120.1
Cl1—Co1—O1168.82 (6)C10—C9—H9A120.1
N1—C1—N4111.4 (2)N5—C10—C9123.0 (3)
N1—C1—C2126.6 (2)N5—C10—H10A118.5
N4—C1—C2122.1 (2)C9—C10—H10A118.5
O1—C2—C1104.7 (2)N5—C11—C3119.0 (2)
O1—C2—H2A110.8N5—C11—C7122.4 (2)
C1—C2—H2A110.8C3—C11—C7118.6 (2)
O1—C2—H2B110.8C1—N1—N2105.3 (2)
C1—C2—H2B110.8C1—N1—Co1ii129.11 (17)
H2A—C2—H2B108.9N2—N1—Co1ii125.07 (16)
C4—C3—O1124.6 (2)N3—N2—N1109.3 (2)
C4—C3—C11121.3 (2)N2—N3—N4108.8 (2)
O1—C3—C11114.1 (2)C1—N4—N3105.3 (2)
C3—C4—C5119.7 (3)C1—N4—Co1124.09 (17)
C3—C4—H4A120.1N3—N4—Co1130.42 (17)
C5—C4—H4A120.1C10—N5—C11117.9 (2)
C6—C5—C4120.6 (2)C10—N5—Co1120.22 (17)
C6—C5—H5A119.7C11—N5—Co1121.84 (16)
C4—C5—H5A119.7C3—O1—C2117.5 (2)
C5—C6—C7120.5 (2)C3—O1—Co1112.87 (14)
C5—C6—H6A119.7C2—O1—Co1116.81 (15)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N3ii0.972.543.292 (4)135
C8—H8A···N2iii0.932.523.398 (4)157
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C11H8N5O)Cl]
Mr320.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.0289 (11), 8.4331 (11), 20.220 (4)
β (°) 96.757 (10)
V3)1190.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku SCXmini CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.701, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
12192, 2846, 2385
Rint0.047
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.08
No. of reflections2846
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N1i2.049 (2)Co1—Cl12.2670 (8)
Co1—N42.053 (2)Co1—O12.3979 (18)
Co1—N52.066 (2)
N1i—Co1—N496.46 (9)N5—Co1—Cl1104.74 (6)
N1i—Co1—N5106.43 (8)N1i—Co1—O186.22 (8)
N4—Co1—N5134.43 (8)N4—Co1—O170.65 (7)
N1i—Co1—Cl1104.93 (7)N5—Co1—O172.16 (7)
N4—Co1—Cl1106.62 (7)Cl1—Co1—O1168.82 (6)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N3ii0.972.543.292 (4)135
C8—H8A···N2iii0.932.523.398 (4)157
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a Start-up Grant to HYY from Southeast University.

References

First citationLuo, H.-Z. & Ye, H.-Y. (2008). Acta Cryst. E64, o136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, o4410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds