metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-κN)nickel(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]

aDepartment of Laboratory and Equipment Management, Yanbian University, Yanbian 133002, People's Republic of China
*Correspondence e-mail: zyxuanchem@yahoo.cn

(Received 6 July 2008; accepted 12 July 2008; online 19 July 2008)

The title compound, [Ni(C2O4)(C5H5N)2]n, was synthesized under hydro­(solvo)thermal conditions. The NiII atom, lying on a twofold rotation axis, has an octa­hedral coordination geometry involving two N atoms from two pyridine ligands and four O atoms from two oxalate ligands. The Ni atoms are connected by the tetra­dentate bridging oxalate ligands into a one-dimensional zigzag chain.

Related literature

For related literature, see: Lu et al. (1999[Lu, J.-Y., Lawandy, M.-A. & Li, J. (1999). Inorg. Chem. 38, 2695-2704.]); Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 4496-4501.]); Wang et al. (2007[Wang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289-m291.]); Yao et al. (2007[Yao, H.-G., Ji, M., Ji, S.-H. & An, Y.-L. (2007). Acta Cryst. E63, m1349-m1350.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2O4)(C5H5N)2]

  • Mr = 304.93

  • Monoclinic, C 2/c

  • a = 14.357 (3) Å

  • b = 10.801 (2) Å

  • c = 8.6669 (17) Å

  • β = 91.52 (3)°

  • V = 1343.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 293 (2) K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.640, Tmax = 0.726

  • 6433 measured reflections

  • 1519 independent reflections

  • 1297 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.04

  • 1519 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2i 2.046 (2)
Ni1—O1 2.0716 (18)
Ni1—N1 2.081 (2)
O2i—Ni1—O2ii 168.78 (10)
O2i—Ni1—O1 89.88 (7)
O2ii—Ni1—O1 81.96 (7)
O1—Ni1—O1iii 86.81 (11)
O2i—Ni1—N1 94.02 (8)
O2ii—Ni1—N1 93.66 (9)
O1—Ni1—N1 89.92 (9)
O1iii—Ni1—N1 174.81 (8)
N1—Ni1—N1iii 93.61 (13)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much research work has been done on metal–oxalate compounds, in the context of studies of molecular-based magnets and open framework structures (Lu et al., 1999; Yao et al., 2007). The geometrical coordination mode and strength of this ligand provide both rigidity and preferred coordination specificity for metal centers (Vaidhyanathan et al., 2002; Wang et al., 2007). In this paper, we report the hydro(solvo)thermal synthesis and structure of a new one-dimensional nickelous oxalate coordination polymer.

The title compound consists of one NiII atom lying on a twofold rotation axis, an oxalate ligand and two coordinated pyridine molecules (Fig. 1). The NiII atom exhibits a distorted octahedral geometry, defined by four O atoms of two oxalate ligands and two pyridine N atoms in a cis arrangement. The Ni—O distances are 2.046 (2) and 2.0716 (18) Å, while the O—Ni—O angles show distortions particularly as a result of chelation (Table 1). The tetradentate oxalate ligands link adjacent Ni atoms into a one-dimensional zigzag chain.

Related literature top

For related literature, see: Lu et al. (1999); Vaidhyanathan et al. (2002); Wang et al. (2007); Yao et al. (2007).

Experimental top

A mixture of K2C2O4.H2O (0.037 g, 0.2 mmol), H3BO3 (0.013 g, 0.2 mmol), NiCl2.2H2O (0.033 g, 0.2 mmol), KOH (0.012 g, 0.2 mmol), pyridine (4 ml) and water (8 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 393 K in 2 h and maintained at 393 K for 72 h. After the mixture was cooled to 298 K, blue crystals of the title compound were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, 1-y, 1/2+z; (ii) 1-x, 1-y, -z; (iii) 1-x, y, 1/2-z.]
catena-Poly[[bis(pyridine-κN)nickel(II)]- µ-oxalato-κ4O1,O2:O1',O2'] top
Crystal data top
[Ni(C2O4)(C5H5N)2]F(000) = 624
Mr = 304.93Dx = 1.508 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1532 reflections
a = 14.357 (3) Åθ = 3.3–27.5°
b = 10.801 (2) ŵ = 1.45 mm1
c = 8.6669 (17) ÅT = 293 K
β = 91.52 (3)°Block, blue
V = 1343.5 (5) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1519 independent reflections
Radiation source: rotating anode1297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.640, Tmax = 0.726l = 1110
6433 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.5041P]
where P = (Fo2 + 2Fc2)/3
1519 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C2O4)(C5H5N)2]V = 1343.5 (5) Å3
Mr = 304.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.357 (3) ŵ = 1.45 mm1
b = 10.801 (2) ÅT = 293 K
c = 8.6669 (17) Å0.26 × 0.24 × 0.22 mm
β = 91.52 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1519 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1297 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.726Rint = 0.041
6433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
1519 reflectionsΔρmin = 0.30 e Å3
87 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.35667 (4)0.25000.04167 (19)
O10.57949 (11)0.49601 (17)0.1553 (2)0.0468 (4)
O20.57299 (12)0.62481 (16)0.0453 (2)0.0465 (4)
N10.59041 (14)0.2248 (2)0.1633 (3)0.0491 (5)
C10.5679 (2)0.1569 (3)0.0391 (5)0.0726 (10)
H10.50880.16640.00590.090*
C20.6274 (3)0.0743 (4)0.0251 (6)0.0911 (13)
H20.60850.02900.11160.090*
C30.7145 (3)0.0584 (3)0.0378 (5)0.0790 (11)
H30.75580.00190.00400.090*
C40.7395 (2)0.1274 (4)0.1630 (5)0.0725 (10)
H40.79860.11900.20830.090*
C50.6764 (2)0.2103 (3)0.2231 (4)0.0592 (8)
H50.69460.25770.30830.090*
C60.54390 (16)0.5345 (2)0.0324 (3)0.0405 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (2)0.0460 (3)0.0499 (3)0.0000.00167 (18)0.000
O10.0341 (9)0.0554 (11)0.0503 (11)0.0087 (7)0.0082 (8)0.0032 (8)
O20.0358 (9)0.0508 (10)0.0527 (11)0.0083 (7)0.0047 (8)0.0002 (8)
N10.0351 (11)0.0486 (12)0.0637 (15)0.0030 (9)0.0034 (10)0.0006 (10)
C10.0480 (17)0.074 (2)0.096 (3)0.0063 (15)0.0007 (17)0.0296 (19)
C20.067 (2)0.089 (3)0.118 (3)0.007 (2)0.011 (2)0.043 (3)
C30.060 (2)0.068 (2)0.110 (3)0.0157 (17)0.025 (2)0.009 (2)
C40.0438 (16)0.086 (2)0.088 (3)0.0185 (15)0.0097 (16)0.021 (2)
C50.0401 (14)0.070 (2)0.067 (2)0.0114 (13)0.0028 (13)0.0074 (15)
C60.0293 (11)0.0451 (13)0.0470 (14)0.0015 (10)0.0014 (10)0.0054 (11)
Geometric parameters (Å, º) top
Ni1—O2i2.046 (2)C1—C21.364 (5)
Ni1—O2ii2.046 (2)C1—H10.9300
Ni1—O12.0716 (18)C2—C31.362 (6)
Ni1—O1iii2.0716 (18)C2—H20.9300
Ni1—N12.081 (2)C3—C41.357 (6)
Ni1—N1iii2.081 (2)C3—H30.9300
O1—C61.240 (3)C4—C51.385 (5)
O2—C61.263 (3)C4—H40.9300
O2—Ni1ii2.046 (2)C5—H50.9300
N1—C11.335 (4)C6—C6ii1.556 (4)
N1—C51.336 (3)
O2i—Ni1—O2ii168.78 (10)C5—N1—Ni1121.3 (2)
O2i—Ni1—O189.88 (7)N1—C1—C2123.1 (3)
O2ii—Ni1—O181.96 (7)N1—C1—H1118.4
O2i—Ni1—O1iii81.96 (7)C2—C1—H1118.4
O2ii—Ni1—O1iii89.88 (7)C3—C2—C1119.9 (4)
O1—Ni1—O1iii86.81 (11)C3—C2—H2120.1
O2i—Ni1—N194.02 (8)C1—C2—H2120.1
O2ii—Ni1—N193.66 (9)C4—C3—C2118.1 (3)
O1—Ni1—N189.92 (9)C4—C3—H3121.0
O1iii—Ni1—N1174.81 (8)C2—C3—H3121.0
O2i—Ni1—N1iii93.66 (9)C3—C4—C5119.7 (3)
O2ii—Ni1—N1iii94.02 (8)C3—C4—H4120.2
O1—Ni1—N1iii174.81 (8)C5—C4—H4120.2
O1iii—Ni1—N1iii89.92 (9)N1—C5—C4122.4 (3)
N1—Ni1—N1iii93.61 (13)N1—C5—H5118.8
C6—O1—Ni1111.39 (15)C4—C5—H5118.8
C6—O2—Ni1ii111.64 (15)O1—C6—O2125.6 (2)
C1—N1—C5116.8 (3)O1—C6—C6ii117.5 (3)
C1—N1—Ni1121.8 (2)O2—C6—C6ii116.9 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2O4)(C5H5N)2]
Mr304.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.357 (3), 10.801 (2), 8.6669 (17)
β (°) 91.52 (3)
V3)1343.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.640, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
6433, 1519, 1297
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.04
No. of reflections1519
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O2i2.046 (2)Ni1—N12.081 (2)
Ni1—O12.0716 (18)
O2i—Ni1—O2ii168.78 (10)O2ii—Ni1—N193.66 (9)
O2i—Ni1—O189.88 (7)O1—Ni1—N189.92 (9)
O2ii—Ni1—O181.96 (7)O1iii—Ni1—N1174.81 (8)
O1—Ni1—O1iii86.81 (11)N1—Ni1—N1iii93.61 (13)
O2i—Ni1—N194.02 (8)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z+1/2.
 

Acknowledgements

The authors thank Yanbian University for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLu, J.-Y., Lawandy, M.-A. & Li, J. (1999). Inorg. Chem. 38, 2695–2704.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 4496–4501.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289–m291.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYao, H.-G., Ji, M., Ji, S.-H. & An, Y.-L. (2007). Acta Cryst. E63, m1349–m1350.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds