metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature redetermination of hexa­kis(μ-chloro­acetato-κ2O:O′)-μ3-oxido-tris­[aquachromium(III)] nitrate 3.5-hydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 July 2008; accepted 28 July 2008; online 31 July 2008)

A low-temperature redetermination of the trinuclear cluster compound described as [Cr3(C2H2ClO2)6O(H2O)3]NO3·3H2O [Glowiak, Kubiak & Jezowska-Trzebiatowska (1977[Glowiak, T., Kubiak, M. & Jezowska-Trzebiatowska, B. (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 359-371.]). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 359–371] shows that the salt is a 3.5-hydrate, [Cr3(C2H2ClO2)6O(H2O)3]NO3·3.5H2O. The trinuclear cluster cation is disordered in four of the six monochloro­acetate groups. One is disordered over two positions in respect of the chloro­methyl atoms (occupancy ratio 0.50:0.50); another is disordered over three positions in respect of the chloro­methyl atoms (occupancy ratio 0.50:0.37:0.13) whereas two are disordered over two positions in respect of the Cl atoms only (occupancy ratios 0.84:0.16 and 0.60:0.40). Of the four independent uncoordinated water mol­ecules, one has an occupancy factor of 0.5. The trinuclear cation has an oxido O atom that is connected to three water-coordinated CrIII atoms, the three metal atoms forming the points of an equilateral triangle. Six carboxyl­ate groups each chelate a Cr—O—Cr fragment. The cations, anions and uncoordinated water mol­ecules are linked by hydrogen bonds.

Related literature

For the room-temperature study, see: Glowiak et al. (1977[Glowiak, T., Kubiak, M. & Jezowska-Trzebiatowska, B. (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 359-371.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr3(C2H2ClO2)6O(H2O)3]NO3·3.5H2O

  • Mr = 912.03

  • Monoclinic, P 21 /c

  • a = 12.4938 (2) Å

  • b = 14.7622 (2) Å

  • c = 17.2687 (3) Å

  • β = 96.293 (1)°

  • V = 3165.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 100 (2) K

  • 0.12 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.953

  • 39914 measured reflections

  • 7271 independent reflections

  • 5349 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.03

  • 7271 reflections

  • 500 parameters

  • 119 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O5wi 0.84 (4) 1.83 (2) 2.616 (6) 157 (5)
O1w—H12⋯O6wii 0.84 (3) 1.99 (3) 2.816 (4) 169 (5)
O2w—H21⋯O15iii 0.84 (3) 1.90 (3) 2.732 (4) 170 (4)
O2w—H22⋯Cl5′iv 0.84 (3) 2.75 (3) 3.295 (6) 124 (6)
O3w—H31⋯O4w 0.844 (14) 1.84 (2) 2.669 (4) 168 (5)
O3w—H32⋯O6w 0.84 (3) 1.88 (3) 2.711 (4) 171 (4)
O4w—H41⋯O7v 0.85 (5) 2.20 (5) 3.046 (4) 175 (5)
O4w—H42⋯O16ii 0.83 (4) 2.27 (4) 2.976 (5) 142 (6)
O5w—H51⋯O7w 0.85 (4) 2.06 (7) 2.79 (1) 144 (11)
O5w—H52⋯O12 0.85 (7) 2.47 (7) 3.27 (1) 156 (10)
O6w—H61⋯O14 0.83 (4) 2.31 (2) 3.093 (6) 158 (5)
O6w—H62⋯O7w 0.85 (4) 2.15 (3) 2.86 (1) 141 (4)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The low-temperature redetermination of the trinuclear cluster compound described as [Cr3O(C2H2ClO2)6(H2O)3](NO3).3H2O by Glowiak et al. (1977) shows that the salt is a 3.5-hydrate, [Cr3O(C2H2ClO2)6(H2O)3](NO3).3.5H2O (Scheme1; Fig. 1). The trinuclear cluster cation is disordered in four of the six monochloroacetate groups. One is disordered over two positions in respect of the chloromethyl atoms (occupancy ratio 0.50:0.50); another is disordered over three positions in respect of the chloromethyl atoms (occupancy ratio 0.50:0.37:0.13) whereas two are disordered over two positions in respect of the Cl atoms only (occupancy ratios 0.84:0.16 and 0.60:0.40). Of the four independent lattice water molecules, one has an occupancy factor of 0.50. The trinuclear cation has an oxido O atom that is connected to three water-coordinated CrIII atoms, the three metal atoms forming the points of an equilateral triangle. Six carboxylate groups each chelates a Cr–O–Cr fragment. The cations, anions and lattice water molecules are linked by hydrogen bonds (Table 1).

Related literature top

For the room-temperature study, see: Glowiak et al. (1977).

Experimental top

Crystals of the title compound obtained by the method of Glowiak et al. (1977) were supplied by Dr Rosiyah Yahya.

Refinement top

The trinuclear cluster cation is disordered in four of the six monochloroacetate groups. Two are disordered over two positions in respect of the Cl atom (Cl1, Cl1') and attached C atom (C2, C2'). The C—C distances were restrained to within 0.01±0.01 Å of each other, as were the C—Cl distances. The temperature factors of the primed C atom were restrained to be equal to those of the umprimed C atom. The disorder was refined to nearly 0.50:0.50.

The other monochloroacetate group is disordered over three positions in respect of the Cl atom (Cl6, Cl6', Cl6") and attached C atom (C12, C12', C12"). The C—C distances were restrained to within 0.01±0.01 Å of each other, and this restraint was applied to the three C—Cl distances. The temperature factors of the C atoms were restrained to be identical. The disorder was refined to approximately 0.50:0.33:0.17.

Meanwhile, the other two monochloroacetate groups are disordered over two positions but for the Cl atoms only (Cl4, Cl4' and Cl5, Cl5'). For each, the C—Cl distances were restrained to within 0.01 Å of each other.

In the later stages of the refinement, the difference Fourier map had an electron density at about 2.5 Å from Cl1 and Cl6, and at about 2.8 Å from O5w and O6w. The electron density was satisfactorily modeled as half a water molecule (O7w). Since the occupancies of Cl1 and Cl6 were refined to nearly 0.5, the occupancies of O7w, Cl1 and Cl6 should, in fact, be exactly 0.5. The O7w atom should be within hydrogen bonding range of O5w and O6w, but should not be near Cl1 and Cl6. As the occupancy of Cl6 was fixed as 0.5, the occupancies of the other Cl6' and Cl6" components were then allowed to refine, subject to a total of 0.5. The ratio was refined to 0.365 (3):0.135 (3).

The anisotropic temperature factors of the three-and-a-half lattice water molecules were restrained to be nearly isotropic. For the six full-occupied water molecules, their H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.84 (1) Å and H···H = 1.37 (1) Å. Their temperature factors were tied to those of the parent atoms by a factor of 1.5. As the half-occupied water molecule (O7w) is an acceptor to two hydrogen bond donors, its H atoms could be placed in chemically sensible positions; they were not refined. The O7w does not form hydrogen bonds to donor atoms. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C). The final difference Fourier map was essentially featureless, with no peak larger than 1 e Å-3 and no hole deeper than -1 e Å-3.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The minor disorder components are not shown. The water molecule O7w has 0.5 occupancy.
hexakis(µ-chloroacetato-κ2O:O')-µ3-oxido- tris[aquachromium(III)] nitrate 3.5-hydrate top
Crystal data top
[Cr3(C2H2ClO2)6O(H2O)3]NO3·3.5H2OF(000) = 1832
Mr = 912.03Dx = 1.914 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7530 reflections
a = 12.4938 (2) Åθ = 2.4–25.8°
b = 14.7622 (2) ŵ = 1.61 mm1
c = 17.2687 (3) ÅT = 100 K
β = 96.293 (1)°Irregular chip, green
V = 3165.78 (9) Å30.12 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7271 independent reflections
Radiation source: fine-focus sealed tube5349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.820, Tmax = 0.953k = 1919
39914 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 3.1321P]
where P = (Fo2 + 2Fc2)/3
7271 reflections(Δ/σ)max = 0.001
500 parametersΔρmax = 0.99 e Å3
119 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cr3(C2H2ClO2)6O(H2O)3]NO3·3.5H2OV = 3165.78 (9) Å3
Mr = 912.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4938 (2) ŵ = 1.61 mm1
b = 14.7622 (2) ÅT = 100 K
c = 17.2687 (3) Å0.12 × 0.06 × 0.03 mm
β = 96.293 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7271 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5349 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.953Rint = 0.053
39914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040119 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.99 e Å3
7271 reflectionsΔρmin = 0.34 e Å3
500 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.65855 (4)0.69687 (3)0.39526 (3)0.02667 (13)
Cr20.88330 (4)0.58714 (3)0.37503 (3)0.02515 (13)
Cr30.66063 (4)0.53305 (3)0.26482 (3)0.02583 (13)
Cl10.4146 (3)0.7073 (3)0.09142 (17)0.0663 (8)0.50
Cl1'0.4626 (3)0.7531 (2)0.09294 (17)0.0689 (8)0.50
Cl20.33828 (7)0.56139 (6)0.47320 (6)0.0418 (2)
Cl30.77180 (9)0.70060 (7)0.66950 (6)0.0518 (3)
Cl41.0378 (4)0.86104 (15)0.3111 (5)0.0628 (13)0.836 (19)
Cl50.9066 (6)0.2693 (5)0.4493 (4)0.0461 (19)0.60 (6)
Cl4'1.0551 (6)0.8685 (10)0.352 (2)0.057 (4)0.164 (19)
Cl5'0.882 (3)0.2778 (14)0.4609 (12)0.076 (4)0.40 (6)
Cl60.8796 (3)0.5426 (4)0.0487 (2)0.1104 (14)0.50
Cl6'0.8604 (3)0.6140 (3)0.0492 (2)0.0697 (12)0.365 (3)
Cl6"1.0377 (7)0.6016 (6)0.1326 (6)0.059 (3)0.135 (3)
O10.5781 (2)0.63301 (17)0.21039 (15)0.0379 (6)
O20.5744 (2)0.74057 (16)0.30038 (17)0.0423 (6)
O30.54075 (18)0.61446 (15)0.41606 (15)0.0340 (6)
O40.54119 (19)0.50527 (16)0.32604 (15)0.0345 (6)
O50.72939 (19)0.67414 (15)0.50140 (15)0.0339 (5)
O60.87725 (18)0.59321 (17)0.48763 (15)0.0351 (6)
O70.76364 (18)0.79443 (14)0.37780 (15)0.0331 (6)
O80.91622 (18)0.71719 (15)0.37064 (16)0.0370 (6)
O90.87243 (19)0.45427 (15)0.38598 (16)0.0362 (6)
O100.7303 (2)0.41852 (15)0.30173 (15)0.0357 (6)
O110.9199 (2)0.57897 (18)0.26822 (16)0.0411 (6)
O120.7686 (2)0.55303 (18)0.19041 (15)0.0381 (6)
O130.73395 (16)0.60570 (13)0.34506 (13)0.0254 (5)
O140.6731 (3)0.1472 (3)0.2318 (3)0.0833 (13)
O150.8166 (3)0.1658 (2)0.1787 (2)0.0597 (9)
O160.7875 (3)0.0391 (2)0.2332 (2)0.0697 (10)
O1w0.5730 (2)0.79263 (18)0.4438 (2)0.0475 (7)
H110.592 (3)0.829 (3)0.480 (2)0.071*
H120.5059 (10)0.795 (3)0.433 (3)0.071*
O2w1.04519 (18)0.57105 (16)0.40302 (16)0.0341 (6)
H211.092 (2)0.595 (3)0.3781 (17)0.051*
H221.069 (3)0.570 (3)0.4506 (7)0.051*
O3w0.5804 (2)0.45767 (17)0.18032 (16)0.0387 (6)
H310.5132 (10)0.459 (3)0.182 (3)0.058*
H320.598 (3)0.4075 (16)0.163 (3)0.058*
O4w0.3657 (3)0.4663 (2)0.1620 (2)0.0705 (10)
H410.328 (4)0.419 (3)0.154 (3)0.106*
H420.352 (5)0.489 (4)0.204 (2)0.106*
O5w0.6040 (6)0.5620 (5)0.0300 (4)0.141 (2)
H510.613 (9)0.506 (2)0.021 (6)0.211*
H520.635 (9)0.574 (7)0.075 (3)0.211*
O6w0.6466 (3)0.3047 (2)0.1130 (2)0.0585 (8)
H610.672 (4)0.265 (3)0.144 (2)0.088*
H620.691 (3)0.316 (3)0.080 (2)0.088*
O7w0.7204 (12)0.4105 (8)0.0095 (8)0.157 (5)0.50
H710.78430.42920.00460.235*0.50
H720.70380.38980.05450.235*0.50
N10.7603 (2)0.1175 (2)0.2160 (2)0.0417 (8)
C10.5514 (3)0.7089 (2)0.2344 (2)0.0349 (8)
C20.4863 (12)0.7624 (7)0.1699 (5)0.0362 (18)0.50
H2A0.53670.80470.14810.043*0.50
H2B0.43410.79980.19490.043*0.50
C2'0.4833 (12)0.7822 (7)0.1910 (5)0.0362 (18)0.50
H2C0.52080.84130.19720.043*0.50
H2D0.41330.78760.21250.043*0.50
C30.5051 (3)0.5443 (2)0.3823 (2)0.0281 (7)
C40.4108 (3)0.4957 (2)0.4107 (2)0.0328 (8)
H4A0.43730.44020.43870.039*
H4B0.36090.47680.36500.039*
C50.8135 (3)0.6338 (2)0.5270 (2)0.0294 (7)
C60.8464 (3)0.6291 (3)0.6136 (2)0.0370 (8)
H6A0.92350.64540.62390.044*
H6B0.83840.56590.63120.044*
C70.8616 (3)0.7876 (2)0.3679 (2)0.0270 (7)
C80.9157 (3)0.8759 (2)0.3518 (2)0.0352 (8)
H8A0.92990.91010.40120.042*0.836 (19)
H8B0.86610.91240.31560.042*0.836 (19)
H8C0.89200.92230.38810.042*0.164 (19)
H8D0.89040.89560.29740.042*0.164 (19)
C90.8080 (3)0.4002 (2)0.3506 (2)0.0308 (7)
C100.8248 (4)0.2993 (2)0.3643 (3)0.0511 (11)
H10A0.87310.27540.32730.061*0.60 (6)
H10B0.75490.26760.35450.061*0.60 (6)
H10C0.86130.27540.32000.061*0.40 (6)
H10D0.75360.26880.36240.061*0.40 (6)
C110.8661 (3)0.5728 (2)0.2035 (2)0.0348 (8)
C120.9326 (13)0.591 (2)0.1367 (4)0.050 (3)0.50
H12A1.00620.56680.15080.060*0.50
H12B0.93860.65710.12960.060*0.50
C12'0.9334 (16)0.606 (3)0.1410 (5)0.050 (3)0.365 (3)
H12C0.99420.56310.13790.060*0.365 (3)
H12D0.96390.66560.15620.060*0.365 (3)
C12"0.9007 (16)0.576 (4)0.1220 (7)0.050 (3)0.135 (3)
H12E0.85980.62350.09060.060*0.135 (3)
H12F0.88770.51720.09550.060*0.135 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0183 (2)0.0182 (2)0.0442 (3)0.00070 (18)0.0065 (2)0.0001 (2)
Cr20.0173 (2)0.0190 (2)0.0398 (3)0.00040 (18)0.0064 (2)0.0012 (2)
Cr30.0225 (3)0.0238 (2)0.0313 (3)0.00189 (19)0.0034 (2)0.0028 (2)
Cl10.0588 (17)0.096 (2)0.0418 (14)0.0318 (15)0.0030 (12)0.0015 (16)
Cl1'0.091 (2)0.0727 (19)0.0409 (14)0.0348 (16)0.0019 (15)0.0023 (14)
Cl20.0289 (4)0.0431 (5)0.0559 (6)0.0019 (4)0.0155 (4)0.0009 (4)
Cl30.0521 (6)0.0564 (6)0.0475 (6)0.0105 (5)0.0077 (5)0.0128 (5)
Cl40.0508 (13)0.0436 (8)0.101 (3)0.0061 (8)0.0421 (16)0.0069 (12)
Cl50.042 (2)0.0331 (15)0.060 (3)0.0081 (11)0.0086 (13)0.0093 (12)
Cl4'0.033 (4)0.041 (4)0.097 (11)0.005 (3)0.006 (5)0.017 (6)
Cl5'0.084 (8)0.044 (3)0.093 (4)0.001 (5)0.023 (5)0.019 (3)
Cl60.086 (2)0.203 (4)0.0466 (17)0.021 (3)0.0250 (15)0.020 (3)
Cl6'0.065 (2)0.111 (3)0.0340 (17)0.020 (2)0.0111 (15)0.015 (2)
Cl6"0.054 (5)0.058 (5)0.069 (5)0.015 (4)0.026 (4)0.000 (4)
O10.0346 (13)0.0363 (13)0.0418 (15)0.0098 (11)0.0000 (11)0.0077 (11)
O20.0364 (15)0.0282 (13)0.0600 (19)0.0087 (11)0.0049 (13)0.0009 (12)
O30.0239 (12)0.0266 (12)0.0536 (16)0.0047 (9)0.0137 (11)0.0050 (11)
O40.0295 (13)0.0355 (13)0.0396 (15)0.0089 (10)0.0082 (11)0.0029 (11)
O50.0271 (12)0.0320 (12)0.0426 (15)0.0046 (10)0.0039 (11)0.0025 (11)
O60.0234 (12)0.0420 (14)0.0406 (15)0.0044 (10)0.0068 (11)0.0003 (11)
O70.0251 (12)0.0233 (11)0.0525 (16)0.0022 (9)0.0112 (11)0.0006 (10)
O80.0235 (12)0.0221 (11)0.0656 (18)0.0021 (9)0.0055 (12)0.0051 (11)
O90.0259 (12)0.0196 (11)0.0616 (17)0.0004 (9)0.0022 (11)0.0013 (11)
O100.0379 (14)0.0222 (11)0.0450 (15)0.0031 (10)0.0050 (12)0.0023 (10)
O110.0291 (13)0.0504 (16)0.0457 (17)0.0016 (11)0.0128 (12)0.0018 (13)
O120.0319 (14)0.0483 (15)0.0353 (14)0.0032 (11)0.0088 (11)0.0026 (11)
O130.0193 (10)0.0199 (10)0.0373 (13)0.0011 (8)0.0049 (9)0.0019 (9)
O140.0467 (19)0.085 (3)0.125 (4)0.0030 (18)0.041 (2)0.029 (2)
O150.0555 (19)0.0463 (16)0.081 (2)0.0064 (14)0.0256 (18)0.0027 (16)
O160.078 (2)0.0499 (19)0.082 (3)0.0108 (17)0.011 (2)0.0139 (17)
O1w0.0254 (13)0.0346 (14)0.083 (2)0.0047 (11)0.0088 (14)0.0190 (14)
O2w0.0197 (11)0.0342 (13)0.0490 (16)0.0008 (10)0.0070 (11)0.0052 (12)
O3w0.0338 (14)0.0371 (14)0.0442 (16)0.0008 (11)0.0010 (12)0.0075 (12)
O4w0.0472 (19)0.065 (2)0.101 (3)0.0105 (16)0.0167 (19)0.037 (2)
O5w0.142 (5)0.157 (5)0.128 (4)0.046 (4)0.031 (4)0.086 (4)
O6w0.0514 (19)0.0529 (19)0.070 (2)0.0062 (15)0.0006 (16)0.0111 (16)
O7w0.181 (9)0.119 (7)0.173 (9)0.006 (7)0.029 (7)0.008 (7)
N10.0307 (17)0.0429 (18)0.052 (2)0.0041 (14)0.0080 (15)0.0089 (15)
C10.0211 (16)0.0286 (17)0.056 (3)0.0036 (13)0.0075 (16)0.0165 (17)
C20.040 (2)0.026 (4)0.042 (5)0.013 (3)0.001 (4)0.001 (3)
C2'0.040 (2)0.026 (4)0.042 (5)0.013 (3)0.001 (4)0.001 (3)
C30.0207 (15)0.0246 (15)0.038 (2)0.0001 (12)0.0006 (14)0.0055 (14)
C40.0259 (17)0.0333 (17)0.040 (2)0.0053 (14)0.0072 (15)0.0007 (15)
C50.0236 (16)0.0226 (15)0.043 (2)0.0060 (13)0.0081 (15)0.0004 (14)
C60.0333 (19)0.0398 (19)0.038 (2)0.0028 (15)0.0062 (16)0.0014 (16)
C70.0262 (17)0.0215 (15)0.0333 (18)0.0035 (12)0.0038 (14)0.0015 (13)
C80.0314 (18)0.0248 (16)0.051 (2)0.0052 (14)0.0128 (17)0.0002 (15)
C90.0266 (17)0.0247 (16)0.042 (2)0.0009 (13)0.0080 (15)0.0027 (14)
C100.047 (2)0.0234 (18)0.077 (3)0.0011 (16)0.019 (2)0.0082 (18)
C110.0323 (19)0.0287 (17)0.046 (2)0.0068 (14)0.0173 (17)0.0071 (16)
C120.046 (3)0.054 (9)0.053 (3)0.005 (3)0.025 (3)0.014 (3)
C12'0.046 (3)0.054 (9)0.053 (3)0.005 (3)0.025 (3)0.014 (3)
C12"0.046 (3)0.054 (9)0.053 (3)0.005 (3)0.025 (3)0.014 (3)
Geometric parameters (Å, º) top
Cr1—O131.905 (2)O1w—H120.84 (3)
Cr1—O21.957 (3)O2w—H210.84 (3)
Cr1—O31.973 (2)O2w—H220.84 (3)
Cr1—O51.975 (3)O3w—H310.844 (14)
Cr1—O71.994 (2)O3w—H320.84 (3)
Cr1—O1w2.010 (2)O4w—H410.85 (5)
Cr2—O131.901 (2)O4w—H420.83 (4)
Cr2—O111.952 (3)O5w—H510.85 (4)
Cr2—O61.956 (3)O5w—H520.85 (7)
Cr2—O81.967 (2)O6w—H610.83 (4)
Cr2—O91.977 (2)O6w—H620.85 (4)
Cr2—O2w2.041 (2)O7w—H710.84
Cr3—O131.906 (2)O7w—H720.84
Cr3—O41.964 (2)C1—C2'1.522 (7)
Cr3—O101.975 (2)C1—C21.525 (7)
Cr3—O11.978 (2)C2—H2A0.9900
Cr3—O121.984 (2)C2—H2B0.9900
Cr3—O3w2.013 (3)C2'—H2C0.9900
Cl1—C21.741 (8)C2'—H2D0.9900
Cl1'—C2'1.738 (8)C3—C41.507 (4)
Cl2—C41.772 (3)C4—H4A0.9900
Cl3—C61.763 (4)C4—H4B0.9900
Cl4—C81.762 (4)C5—C61.508 (5)
Cl4'—C81.745 (8)C6—H6A0.9900
Cl5'—C101.770 (8)C6—H6B0.9900
Cl6—C121.742 (11)C7—C81.507 (4)
Cl6'—C12'1.744 (12)C8—H8A0.9900
Cl6"—C12"1.741 (13)C8—H8B0.9900
O1—C11.252 (4)C8—H8C0.9900
O2—C11.236 (5)C8—H8D0.9900
O3—C31.247 (4)C9—C101.518 (4)
O4—C31.254 (4)C10—H10A0.9900
O5—C51.247 (4)C10—H10B0.9900
O6—C51.255 (4)C10—H10C0.9900
O7—C71.258 (4)C10—H10D0.9900
O8—C71.242 (4)C11—C121.517 (7)
O9—C91.246 (4)C11—C12'1.518 (8)
O10—C91.244 (4)C11—C12"1.518 (10)
O11—C111.243 (5)C12—H12A0.9900
O12—C111.249 (4)C12—H12B0.9900
O14—N11.233 (4)C12'—H12C0.9900
O15—N11.230 (4)C12'—H12D0.9900
O16—N11.234 (4)C12"—H12E0.9900
O1w—H110.84 (4)C12"—H12F0.9900
O13—Cr1—O295.69 (10)C1—C2—Cl1121.0 (6)
O13—Cr1—O393.62 (9)C1—C2—H2A107.1
O2—Cr1—O390.71 (11)Cl1—C2—H2A107.1
O13—Cr1—O596.24 (10)C1—C2—H2B107.1
O2—Cr1—O5168.02 (10)Cl1—C2—H2B107.1
O3—Cr1—O589.64 (11)H2A—C2—H2B106.8
O13—Cr1—O794.29 (9)C1—C2'—Cl1'108.6 (5)
O2—Cr1—O786.43 (11)C1—C2'—H2C110.0
O3—Cr1—O7171.82 (9)Cl1'—C2'—H2C110.0
O5—Cr1—O791.58 (11)C1—C2'—H2D110.0
O13—Cr1—O1w177.12 (12)Cl1'—C2'—H2D110.0
O2—Cr1—O1w81.71 (13)H2C—C2'—H2D108.3
O3—Cr1—O1w85.20 (10)O3—C3—O4127.1 (3)
O5—Cr1—O1w86.39 (12)O3—C3—C4119.6 (3)
O7—Cr1—O1w86.81 (10)O4—C3—C4113.2 (3)
O13—Cr2—O1194.36 (11)C3—C4—Cl2114.1 (2)
O13—Cr2—O696.91 (10)C3—C4—H4A108.7
O11—Cr2—O6168.71 (11)Cl2—C4—H4A108.7
O13—Cr2—O892.98 (9)C3—C4—H4B108.7
O11—Cr2—O887.27 (11)Cl2—C4—H4B108.7
O6—Cr2—O891.41 (11)H4A—C4—H4B107.6
O13—Cr2—O995.36 (9)O5—C5—O6126.6 (3)
O11—Cr2—O993.14 (11)O5—C5—C6120.1 (3)
O6—Cr2—O986.55 (11)O6—C5—C6113.3 (3)
O8—Cr2—O9171.60 (10)C5—C6—Cl3114.4 (3)
O13—Cr2—O2w177.32 (10)C5—C6—H6A108.7
O11—Cr2—O2w83.58 (11)Cl3—C6—H6A108.7
O6—Cr2—O2w85.14 (10)C5—C6—H6B108.7
O8—Cr2—O2w85.22 (10)Cl3—C6—H6B108.7
O9—Cr2—O2w86.48 (10)H6A—C6—H6B107.6
O13—Cr3—O493.39 (10)O8—C7—O7126.9 (3)
O13—Cr3—O1095.01 (10)O8—C7—C8118.4 (3)
O4—Cr3—O1088.96 (11)O7—C7—C8114.7 (3)
O13—Cr3—O196.30 (10)C7—C8—Cl4'114.3 (4)
O4—Cr3—O191.39 (11)C7—C8—Cl4113.0 (2)
O10—Cr3—O1168.65 (11)C7—C8—H8A109.0
O13—Cr3—O1294.62 (10)Cl4—C8—H8A109.0
O4—Cr3—O12171.88 (11)C7—C8—H8B109.0
O10—Cr3—O1291.67 (11)Cl4—C8—H8B109.0
O1—Cr3—O1286.40 (10)H8A—C8—H8B107.8
O13—Cr3—O3w178.83 (10)C7—C8—H8C108.0
O4—Cr3—O3w85.83 (11)C7—C8—H8D108.8
O10—Cr3—O3w85.86 (11)H8C—C8—H8D107.8
O1—Cr3—O3w82.86 (11)O10—C9—O9127.4 (3)
O12—Cr3—O3w86.14 (11)O10—C9—C10113.8 (3)
C1—O1—Cr3130.9 (3)O9—C9—C10118.8 (3)
C1—O2—Cr1134.1 (2)C9—C10—Cl5'110.9 (8)
C3—O3—Cr1131.5 (2)C9—C10—H10A109.4
C3—O4—Cr3132.8 (2)Cl5'—C10—H10A109.5
C5—O5—Cr1133.3 (2)C9—C10—H10B109.4
C5—O6—Cr2131.1 (2)Cl5'—C10—H10B109.4
C7—O7—Cr1129.0 (2)H10A—C10—H10B108.0
C7—O8—Cr2134.6 (2)C9—C10—H10C107.1
C9—O9—Cr2129.6 (2)C9—C10—H10D109.3
C9—O10—Cr3133.6 (2)H10C—C10—H10D107.3
C11—O11—Cr2134.1 (2)O11—C11—O12126.9 (3)
C11—O12—Cr3129.5 (3)O11—C11—C12112.6 (5)
Cr2—O13—Cr1119.84 (12)O12—C11—C12120.5 (5)
Cr2—O13—Cr3119.75 (11)O11—C11—C12'109.3 (5)
Cr1—O13—Cr3120.41 (11)O12—C11—C12'123.4 (6)
Cr1—O1w—H11130 (3)O11—C11—C12"130.6 (7)
Cr1—O1w—H12120 (3)O12—C11—C12"102.2 (7)
H11—O1w—H12110 (4)C11—C12—Cl6113.9 (6)
Cr2—O2w—H21124 (3)C11—C12—H12A108.8
Cr2—O2w—H22118 (3)Cl6—C12—H12A108.8
H21—O2w—H22108 (4)C11—C12—H12B108.8
Cr3—O3w—H31113 (3)Cl6—C12—H12B108.8
Cr3—O3w—H32128 (3)H12A—C12—H12B107.7
H31—O3w—H32110 (4)C11—C12'—Cl6'113.2 (7)
H41—O4w—H42108 (5)C11—C12'—H12C108.9
H51—O5w—H52108 (6)Cl6'—C12'—H12C108.9
H61—O6w—H62110 (4)C11—C12'—H12D108.9
H71—O7w—H72110Cl6'—C12'—H12D108.9
O15—N1—O14118.7 (4)H12C—C12'—H12D107.8
O15—N1—O16120.7 (3)C11—C12"—Cl6"106.6 (8)
O14—N1—O16120.5 (4)C11—C12"—H12E110.4
O2—C1—O1126.9 (3)Cl6"—C12"—H12E110.4
O2—C1—C2'104.2 (4)C11—C12"—H12F110.4
O1—C1—C2'128.9 (5)Cl6"—C12"—H12F110.4
O2—C1—C2121.9 (4)H12E—C12"—H12F108.6
O1—C1—C2111.2 (5)
O13—Cr3—O1—C123.1 (3)O5—Cr1—O13—Cr3139.83 (13)
O4—Cr3—O1—C170.4 (3)O7—Cr1—O13—Cr3128.11 (13)
O10—Cr3—O1—C1162.1 (5)O4—Cr3—O13—Cr2131.56 (13)
O12—Cr3—O1—C1117.4 (3)O10—Cr3—O13—Cr242.31 (14)
O3w—Cr3—O1—C1156.1 (3)O1—Cr3—O13—Cr2136.66 (13)
O13—Cr1—O2—C118.0 (3)O12—Cr3—O13—Cr249.78 (14)
O3—Cr1—O2—C175.8 (3)O4—Cr3—O13—Cr148.53 (14)
O5—Cr1—O2—C1167.4 (4)O10—Cr3—O13—Cr1137.78 (13)
O7—Cr1—O2—C1111.9 (3)O1—Cr3—O13—Cr143.25 (14)
O1w—Cr1—O2—C1160.8 (4)O12—Cr3—O13—Cr1130.13 (13)
O13—Cr1—O3—C325.9 (3)Cr1—O2—C1—O11.1 (6)
O2—Cr1—O3—C369.9 (3)Cr1—O2—C1—C2'179.6 (7)
O5—Cr1—O3—C3122.1 (3)Cr1—O2—C1—C2177.3 (8)
O1w—Cr1—O3—C3151.5 (3)Cr3—O1—C1—O22.1 (5)
O13—Cr3—O4—C322.5 (3)Cr3—O1—C1—C2'177.0 (9)
O10—Cr3—O4—C3117.5 (3)Cr3—O1—C1—C2179.3 (7)
O1—Cr3—O4—C373.9 (3)O2—C1—C2—Cl1156.9 (7)
O3w—Cr3—O4—C3156.6 (3)O1—C1—C2—Cl124.5 (13)
O13—Cr1—O5—C517.5 (3)C2'—C1—C2—Cl1150 (5)
O2—Cr1—O5—C5157.2 (5)O2—C1—C2'—Cl1'171.1 (7)
O3—Cr1—O5—C5111.1 (3)O1—C1—C2'—Cl1'9.6 (14)
O7—Cr1—O5—C577.0 (3)C2—C1—C2'—Cl1'2 (3)
O1w—Cr1—O5—C5163.7 (3)Cr1—O3—C3—O43.7 (5)
O13—Cr2—O6—C527.7 (3)Cr1—O3—C3—C4178.5 (2)
O11—Cr2—O6—C5148.5 (5)Cr3—O4—C3—O31.6 (6)
O8—Cr2—O6—C565.4 (3)Cr3—O4—C3—C4179.5 (2)
O9—Cr2—O6—C5122.7 (3)O3—C3—C4—Cl216.3 (4)
O2w—Cr2—O6—C5150.5 (3)O4—C3—C4—Cl2165.7 (3)
O13—Cr1—O7—C725.0 (3)Cr1—O5—C5—O61.5 (5)
O2—Cr1—O7—C7120.4 (3)Cr1—O5—C5—C6179.5 (2)
O5—Cr1—O7—C771.4 (3)Cr2—O6—C5—O57.9 (5)
O1w—Cr1—O7—C7157.7 (3)Cr2—O6—C5—C6173.1 (2)
O13—Cr2—O8—C714.9 (4)O5—C5—C6—Cl310.9 (4)
O11—Cr2—O8—C7109.2 (4)O6—C5—C6—Cl3170.0 (2)
O6—Cr2—O8—C782.1 (4)Cr2—O8—C7—O710.5 (6)
O2w—Cr2—O8—C7167.1 (4)Cr2—O8—C7—C8170.1 (3)
O13—Cr2—O9—C930.3 (3)Cr1—O7—C7—O83.9 (6)
O11—Cr2—O9—C964.4 (3)Cr1—O7—C7—C8176.8 (2)
O6—Cr2—O9—C9126.9 (3)O8—C7—C8—Cl4'8.4 (14)
O2w—Cr2—O9—C9147.8 (3)O7—C7—C8—Cl4'171.0 (14)
O13—Cr3—O10—C911.4 (3)O8—C7—C8—Cl417.8 (6)
O4—Cr3—O10—C9104.7 (3)O7—C7—C8—Cl4162.8 (4)
O1—Cr3—O10—C9163.4 (5)Cr3—O10—C9—O97.9 (6)
O12—Cr3—O10—C983.4 (3)Cr3—O10—C9—C10174.4 (3)
O3w—Cr3—O10—C9169.4 (3)Cr2—O9—C9—O104.0 (5)
O13—Cr2—O11—C1110.5 (3)Cr2—O9—C9—C10173.5 (3)
O6—Cr2—O11—C11173.2 (5)O10—C9—C10—Cl5'149.7 (16)
O8—Cr2—O11—C11103.3 (3)O9—C9—C10—Cl5'32.4 (16)
O9—Cr2—O11—C1185.1 (3)Cr2—O11—C11—O1214.5 (6)
O2w—Cr2—O11—C11171.2 (3)Cr2—O11—C11—C12166.4 (14)
O13—Cr3—O12—C1125.2 (3)Cr2—O11—C11—C12'158 (2)
O10—Cr3—O12—C1170.0 (3)Cr2—O11—C11—C12"173 (3)
O1—Cr3—O12—C11121.2 (3)Cr3—O12—C11—O114.9 (5)
O3w—Cr3—O12—C11155.7 (3)Cr3—O12—C11—C12176.1 (15)
O11—Cr2—O13—Cr1135.27 (13)Cr3—O12—C11—C12'166 (2)
O6—Cr2—O13—Cr144.00 (14)Cr3—O12—C11—C12"179 (2)
O8—Cr2—O13—Cr147.79 (14)O11—C11—C12—Cl6156.8 (13)
O9—Cr2—O13—Cr1131.16 (13)O12—C11—C12—Cl622 (2)
O11—Cr2—O13—Cr344.64 (14)C12'—C11—C12—Cl6134 (12)
O6—Cr2—O13—Cr3136.09 (13)C12"—C11—C12—Cl68 (7)
O8—Cr2—O13—Cr3132.12 (14)O11—C11—C12'—Cl6'172 (2)
O9—Cr2—O13—Cr348.93 (14)O12—C11—C12'—Cl6'1 (4)
O2—Cr1—O13—Cr2138.63 (13)C12—C11—C12'—Cl6'74 (8)
O3—Cr1—O13—Cr2130.29 (13)C12"—C11—C12'—Cl6'36 (5)
O5—Cr1—O13—Cr240.26 (14)O11—C11—C12"—Cl6"5 (4)
O7—Cr1—O13—Cr251.80 (14)O12—C11—C12"—Cl6"179 (2)
O2—Cr1—O13—Cr341.28 (14)C12—C11—C12"—Cl6"14 (6)
O3—Cr1—O13—Cr349.80 (14)C12'—C11—C12"—Cl6"31 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5wi0.84 (4)1.83 (2)2.616 (6)157 (5)
O1w—H12···O6wii0.84 (3)1.99 (3)2.816 (4)169 (5)
O2w—H21···O15iii0.84 (3)1.90 (3)2.732 (4)170 (4)
O2w—H22···CL5iv0.84 (3)2.75 (3)3.295 (6)124 (6)
O3w—H31···O4w0.84 (1)1.84 (2)2.669 (4)168 (5)
O3w—H32···O6w0.84 (3)1.88 (3)2.711 (4)171 (4)
O4w—H41···O7v0.85 (5)2.20 (5)3.046 (4)175 (5)
O4w—H42···O16ii0.83 (4)2.27 (4)2.976 (5)142 (6)
O5w—H51···O7w0.85 (4)2.06 (7)2.79 (1)144 (11)
O5w—H52···O120.85 (7)2.47 (7)3.27 (1)156 (10)
O6w—H61···O140.83 (4)2.31 (2)3.093 (6)158 (5)
O6w—H62···O7w0.85 (4)2.15 (3)2.86 (1)141 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cr3(C2H2ClO2)6O(H2O)3]NO3·3.5H2O
Mr912.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.4938 (2), 14.7622 (2), 17.2687 (3)
β (°) 96.293 (1)
V3)3165.78 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.12 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
39914, 7271, 5349
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.03
No. of reflections7271
No. of parameters500
No. of restraints119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5wi0.84 (4)1.83 (2)2.616 (6)157 (5)
O1w—H12···O6wii0.84 (3)1.99 (3)2.816 (4)169 (5)
O2w—H21···O15iii0.84 (3)1.90 (3)2.732 (4)170 (4)
O2w—H22···CL5'iv0.84 (3)2.75 (3)3.295 (6)124 (6)
O3w—H31···O4w0.844 (14)1.84 (2)2.669 (4)168 (5)
O3w—H32···O6w0.84 (3)1.88 (3)2.711 (4)171 (4)
O4w—H41···O7v0.85 (5)2.20 (5)3.046 (4)175 (5)
O4w—H42···O16ii0.83 (4)2.27 (4)2.976 (5)142 (6)
O5w—H51···O7w0.85 (4)2.06 (7)2.79 (1)144 (11)
O5w—H52···O120.85 (7)2.47 (7)3.27 (1)156 (10)
O6w—H61···O140.83 (4)2.31 (2)3.093 (6)158 (5)
O6w—H62···O7w0.85 (4)2.15 (3)2.86 (1)141 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study through the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlowiak, T., Kubiak, M. & Jezowska-Trzebiatowska, B. (1977). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 359–371.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds