metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(1,10-phenanthroline-κ2N,N′)magnesium(II) bis­­[(2,4-di­chloro­phen­yl)acetate]

aDepartment of Applied Chemistry, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Chemistry and Chemical Technology, Daqing Petroleum Institute, Daqing 163318, People's Republic of China
*Correspondence e-mail: liujiwei76@126.com

(Received 22 May 2008; accepted 15 July 2008; online 23 July 2008)

In the mononuclear title complex, [Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2, each MgII ion is hexa­coordinated by two N atoms from a 1,10-phenanthroline ligand [Mg—N = 2.233 (2) Å] and four water mol­ecules [Mg—OW = 2.033 (2) and 2.043 (1) Å] in a distorted octa­hedral geometry. A twofold rotation axis passes through the Mg atom. In the crystal structure, the cations and anions are linked by inter­molecular O—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.804 (2) Å] into layers parallel to the ac plane.

Related literature

For related literature, see: Castellari et al. (1999[Castellari, C., Comelli, F. & Ottani, S. (1999). Acta Cryst. C55, 1054-1056.]); Kopylovich et al. (2003[Kopylovich, M. N., Pombeiro, A. J. L., Fischer, A., Kloo, L. & Kukushkin, V. Yu. (2003). Inorg. Chem. 42, 7239-7248.]); Sharma et al. (2007[Sharma, R., Sharma, R. P., Balaa, R. & Kariuki, B. M. (2007). J. Mol. Struct. 826, 177-184.]); Zhou et al. (2007[Zhou, J., Sun, C. & Jin, L. (2007). J. Mol. Struct. 832, 55-62.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2

  • Mr = 684.62

  • Monoclinic, C 2/c

  • a = 28.926 (1) Å

  • b = 14.0447 (6) Å

  • c = 7.6074 (3) Å

  • β = 94.785 (1)°

  • V = 3079.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 273 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: empirical [OR multi-scan](using intensity measurements) (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.921

  • 10955 measured reflections

  • 3732 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.02

  • 3732 reflections

  • 207 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2W1⋯O1i 0.849 (9) 1.876 (9) 2.725 (2) 178 (2)
O2W—H2W2⋯O1ii 0.841 (9) 1.96 (1) 2.772 (2) 161 (2)
O1W—H1W1⋯O2iii 0.851 (9) 1.91 (1) 2.728 (2) 162 (2)
O1W—H1W2⋯O2i 0.849 (9) 1.84 (1) 2.685 (2) 171 (2)
Symmetry codes: (i) x, y, z-1; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The rigid-type phenylacetic acid and its derivatives have versatile binding abilities and the potential capabilities of generating complicated supramolecular architectures. Nevertleless, main group or transition metal compounds in which the phenylacetate ion does not coordinate the metals are rare (Castellari et al. (1999), Kopylovich et al. (2003), Sharma et al. (2007), Zhou et al. (2007)). In the present study, we chose 2,4-dichlorophenylacetate as the anion to prepare a new mononuclear magnesiumII complex, [Mg(C12H8N2)(H2O)4][(C8H5Cl2O2)2], (I), the crystal structure of which is reported here.

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one half of a [Mg(1,10-phen)(H2O)4] cation and one 2,4-dichlorophenylacetate anion. The MgII atom displays a distorted octahedral geometry defined by two N atoms from the 1,10-phenanthroline ligand [Mg—N 2.233 (2) Å] and four water molecules [Mg—Ow 2.033 (2), 2.043 (1) Å], respectively. The characteristic CO(carboxylate) bond lengths suggest electron delocalization in the carboxylate groups of the anionic moieties. In the crystal structure, the cations and anions are linked by intermolecular O—H···O hydrogen bonds between the carboxylate O atoms and the coordinated water molecules. Additional π-π stacking interactions between 1,10-phen ligands with a distance of 3.804 (2) Å leads to the observation of layers parallel to the ac-plane (details see Table 1 and Fig. 2).

Related literature top

For related literature, see: Castellari et al. (1999); Kopylovich et al. (2003); Sharma et al. (2007); Zhou et al. (2007).

Experimental top

Benzyloxyacetic acid is commercially available and was used without further purification. The title complex was prepared by the addition of Mg(Cl)2 × 6 H2O (4.06 g, 20 mmol) and 1,10-phenanthroline (3.98 g, 20 mmol) to a hot aqueous solution of 2,4-dichlorophenylacetic acid (4.10 g, 20 mmol); the pH was adjusted to 6 with 0.1M sodium hydroxide. The solution was allowed to evaporate at room temperature. Colorless crystals separated from the filtered solution after several days. CHN analysis: Calcd. for C28H26N2O8Cl4Mg: C 49.12, H 3.83, N 4.09%. Found: C 49.14, H 3.82, 4.08%.

Refinement top

The H atoms attached to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecule were located in a difference Fourier map and refined with O—H distance restraint of 0.85 (1) Å, and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I).
Tetraaqua(1,10-phenanthroline-κ2N,N')magnesium(II) bis[(2,4-dichlorophenyl)acetate] top
Crystal data top
[Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2F(000) = 1408
Mr = 684.62Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10366 reflections
a = 28.926 (1) Åθ = 2.8–28.2°
b = 14.0447 (6) ŵ = 0.46 mm1
c = 7.6074 (3) ÅT = 273 K
β = 94.785 (1)°Prism, colorless
V = 3079.8 (2) Å30.34 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3732 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.000 pixels mm-1θmax = 28.2°, θmin = 2.8°
ω scansh = 3833
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.867, Tmax = 0.921l = 910
10955 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.7903P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3732 reflectionsΔρmax = 0.36 e Å3
207 parametersΔρmin = 0.47 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0001 (1)
Crystal data top
[Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2V = 3079.8 (2) Å3
Mr = 684.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.926 (1) ŵ = 0.46 mm1
b = 14.0447 (6) ÅT = 273 K
c = 7.6074 (3) Å0.34 × 0.26 × 0.18 mm
β = 94.785 (1)°
Data collection top
Bruker P4
diffractometer
3732 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2619 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.921Rint = 0.021
10955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
3732 reflectionsΔρmin = 0.47 e Å3
207 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.70119 (6)0.25000.0377 (2)
Cl10.30958 (2)0.68124 (5)0.95908 (8)0.06695 (19)
Cl20.25982 (3)0.96821 (5)0.52259 (13)0.0957 (3)
O10.42857 (5)0.68303 (10)0.76580 (19)0.0501 (3)
O1W0.44481 (6)0.61206 (10)0.20734 (19)0.0613 (4)
O2W0.50764 (5)0.69659 (11)0.01445 (17)0.0480 (3)
O20.41678 (5)0.54277 (10)0.88709 (19)0.0544 (4)
N10.45496 (5)0.82808 (11)0.1896 (2)0.0423 (4)
C10.41135 (7)0.82785 (17)0.1205 (3)0.0577 (6)
H1A0.39660.76970.09910.069*
C20.38664 (9)0.9115 (2)0.0787 (4)0.0733 (7)
H2A0.35620.90840.02930.088*
C30.40715 (9)0.9969 (2)0.1101 (3)0.0705 (7)
H3A0.39071.05270.08460.085*
C40.45322 (8)1.00081 (15)0.1812 (3)0.0552 (5)
C50.47614 (6)0.91362 (12)0.2161 (2)0.0392 (4)
C60.47783 (10)1.08762 (15)0.2176 (4)0.0734 (8)
H6A0.46271.14530.19570.088*
C70.33544 (7)0.68867 (14)0.6254 (3)0.0457 (5)
C80.31108 (6)0.73310 (14)0.7514 (3)0.0456 (4)
C90.28790 (7)0.81845 (15)0.7222 (3)0.0544 (5)
H9A0.27200.84660.81010.065*
C100.28898 (7)0.86044 (16)0.5596 (3)0.0603 (6)
C110.31228 (9)0.81981 (19)0.4301 (3)0.0698 (7)
H11A0.31280.84910.32060.084*
C120.33515 (8)0.73431 (19)0.4637 (3)0.0628 (6)
H12A0.35080.70660.37500.075*
C130.36083 (7)0.59691 (15)0.6623 (3)0.0532 (5)
H13A0.36820.56900.55140.064*
H13B0.34060.55300.71760.064*
C140.40558 (7)0.60887 (14)0.7815 (2)0.0413 (4)
H2W10.4831 (4)0.6910 (16)0.083 (2)0.062*
H2W20.5312 (4)0.6889 (16)0.071 (2)0.062*
H1W10.4397 (8)0.5689 (12)0.2818 (19)0.062*
H1W20.4390 (8)0.5895 (14)0.1044 (13)0.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0472 (5)0.0291 (4)0.0373 (4)0.0000.0060 (4)0.000
Cl10.0679 (4)0.0739 (4)0.0613 (4)0.0017 (3)0.0193 (3)0.0105 (3)
Cl20.0834 (5)0.0587 (4)0.1391 (7)0.0047 (3)0.0259 (5)0.0226 (4)
O10.0404 (7)0.0532 (8)0.0568 (9)0.0033 (6)0.0054 (6)0.0051 (6)
O1W0.0958 (12)0.0482 (8)0.0394 (8)0.0322 (8)0.0021 (8)0.0015 (6)
O2W0.0441 (8)0.0631 (9)0.0373 (7)0.0031 (7)0.0062 (6)0.0027 (6)
O20.0743 (10)0.0418 (7)0.0463 (8)0.0029 (7)0.0003 (7)0.0041 (6)
N10.0421 (9)0.0402 (8)0.0452 (9)0.0014 (7)0.0074 (7)0.0005 (7)
C10.0458 (12)0.0650 (14)0.0623 (14)0.0013 (10)0.0035 (10)0.0007 (11)
C20.0489 (13)0.095 (2)0.0760 (17)0.0240 (14)0.0029 (11)0.0105 (15)
C30.0744 (17)0.0695 (16)0.0687 (16)0.0356 (14)0.0129 (13)0.0151 (13)
C40.0762 (15)0.0408 (10)0.0513 (12)0.0170 (10)0.0204 (11)0.0065 (9)
C50.0504 (10)0.0320 (8)0.0368 (9)0.0040 (8)0.0137 (7)0.0022 (7)
C60.114 (2)0.0323 (10)0.0777 (18)0.0144 (11)0.0287 (16)0.0067 (11)
C70.0366 (10)0.0509 (11)0.0486 (11)0.0043 (8)0.0024 (8)0.0053 (9)
C80.0377 (10)0.0482 (11)0.0509 (11)0.0053 (8)0.0037 (8)0.0014 (9)
C90.0407 (11)0.0514 (12)0.0710 (15)0.0013 (9)0.0041 (10)0.0032 (10)
C100.0440 (12)0.0514 (12)0.0827 (17)0.0039 (10)0.0108 (11)0.0088 (12)
C110.0623 (15)0.0838 (18)0.0612 (15)0.0099 (13)0.0061 (12)0.0236 (13)
C120.0558 (13)0.0827 (17)0.0498 (12)0.0009 (12)0.0034 (10)0.0016 (12)
C130.0486 (12)0.0500 (12)0.0602 (13)0.0000 (9)0.0006 (9)0.0155 (10)
C140.0430 (10)0.0424 (10)0.0395 (10)0.0058 (8)0.0095 (8)0.0086 (8)
Geometric parameters (Å, º) top
Mg1—N12.2327 (16)C3—C41.397 (3)
Mg1—O1W2.0333 (15)C3—H3A0.9300
Mg1—O2W2.0432 (13)C4—C51.407 (3)
Mg1—N1i2.2327 (16)C4—C61.427 (3)
Mg1—O1Wi2.0333 (15)C5—C5i1.433 (4)
Mg1—O2Wi2.0432 (13)C6—C6i1.335 (6)
Cl1—C81.744 (2)C6—H6A0.9300
Cl2—C101.744 (2)C7—C81.385 (3)
N1—C11.325 (3)C7—C121.386 (3)
N1—C51.356 (2)C7—C131.498 (3)
O1—C141.247 (2)C8—C91.382 (3)
O2—C141.252 (2)C9—C101.373 (3)
O1W—H1W10.851 (9)C9—H9A0.9300
O1W—H1W20.849 (9)C10—C111.365 (4)
O2W—H2W10.849 (9)C11—C121.384 (3)
O2W—H2W20.841 (9)C11—H11A0.9300
C1—C21.399 (3)C12—H12A0.9300
C1—H1A0.9300C13—C141.527 (3)
C2—C31.350 (4)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
N1i—Mg1—N174.07 (8)C3—C4—C6123.6 (2)
O1W—Mg1—N191.24 (6)C4—C3—H3A120.2
O1Wi—Mg1—N1163.97 (7)C4—C5—C5i119.50 (13)
O1W—Mg1—O1Wi104.01 (11)C4—C6—H6A119.3
O1W—Mg1—O2W88.36 (6)C5—N1—Mg1115.34 (12)
O1Wi—Mg1—O2W89.41 (6)C5—C4—C6119.2 (2)
O2Wi—Mg1—N196.82 (6)C6i—C6—C4121.32 (14)
O2W—Mg1—N186.08 (6)C6i—C6—H6A119.3
O2Wi—Mg1—O2W176.38 (9)C7—C8—Cl1119.45 (15)
Mg1—O1W—H1W1120.6 (15)C7—C12—H12A118.9
Mg1—O1W—H1W2118.1 (15)C7—C13—C14113.25 (16)
Mg1—O2W—H2W1117.2 (14)C7—C13—H13A108.9
Mg1—O2W—H2W2131.6 (14)C7—C13—H13B108.9
N1—C1—C2122.7 (2)C8—C7—C12116.1 (2)
N1—C1—H1A118.7C8—C7—C13121.84 (19)
N1—C5—C4122.90 (18)C8—C9—H9A121.0
N1—C5—C5i117.60 (10)C9—C8—C7123.2 (2)
O1—C14—O2124.69 (18)C9—C8—Cl1117.34 (17)
O1—C14—C13117.88 (18)C9—C10—Cl2118.1 (2)
O2—C14—C13117.42 (18)C10—C9—C8118.0 (2)
O1W—Mg1—N1i163.97 (7)C10—C9—H9A121.0
O1Wi—Mg1—N1i91.24 (6)C10—C11—C12119.1 (2)
O1W—Mg1—O2Wi89.41 (6)C10—C11—H11A120.5
O1Wi—Mg1—O2Wi88.36 (6)C11—C10—C9121.4 (2)
O2Wi—Mg1—N1i86.08 (6)C11—C10—Cl2120.5 (2)
O2W—Mg1—N1i96.82 (6)C11—C12—C7122.2 (2)
C1—N1—C5117.67 (17)C11—C12—H12A118.9
C1—N1—Mg1126.82 (14)C12—C7—C13122.1 (2)
C1—C2—H2A120.1C12—C11—H11A120.5
C2—C1—H1A118.7C14—C13—H13A108.9
C2—C3—C4119.7 (2)C14—C13—H13B108.9
C2—C3—H3A120.2H1W1—O1W—H1W2108.5 (14)
C3—C2—C1119.8 (2)H2W1—O2W—H2W2110.2 (14)
C3—C2—H2A120.1H13A—C13—H13B107.7
C3—C4—C5117.2 (2)
Mg1—N1—C1—C2176.53 (18)C5—N1—C1—C21.5 (3)
Mg1—N1—C5—C4178.64 (15)C5—C4—C6—C6i0.6 (5)
Mg1—N1—C5—C5i1.9 (3)C6—C4—C5—N1178.3 (2)
N1i—Mg1—N1—C1175.8 (2)C6—C4—C5—C5i1.2 (3)
N1i—Mg1—N1—C50.66 (9)C7—C8—C9—C100.5 (3)
N1—C1—C2—C30.6 (4)C7—C13—C14—O135.1 (3)
O1W—Mg1—N1—C110.68 (18)C7—C13—C14—O2145.54 (19)
O1Wi—Mg1—N1—C1151.6 (2)C8—C7—C12—C110.6 (3)
O1W—Mg1—N1—C5174.14 (13)C8—C7—C13—C1474.1 (2)
O1Wi—Mg1—N1—C523.6 (3)C8—C9—C10—C110.2 (3)
O2Wi—Mg1—N1—C1100.24 (18)C8—C9—C10—Cl2179.92 (15)
O2W—Mg1—N1—C177.59 (18)C9—C10—C11—C120.2 (4)
O2Wi—Mg1—N1—C584.59 (13)C10—C11—C12—C70.4 (4)
O2W—Mg1—N1—C597.59 (13)Cl1—C8—C9—C10179.64 (16)
C1—N1—C5—C43.0 (3)C12—C7—C8—C90.7 (3)
C1—N1—C5—C5i177.5 (2)Cl2—C10—C11—C12179.89 (17)
C1—C2—C3—C41.2 (4)C13—C7—C8—C9179.01 (18)
C2—C3—C4—C50.2 (4)C12—C7—C8—Cl1179.82 (15)
C2—C3—C4—C6179.5 (2)C12—C7—C13—C14105.5 (2)
C3—C4—C5—N12.4 (3)C13—C7—C8—Cl10.2 (3)
C3—C4—C6—C6i178.7 (3)C13—C7—C12—C11179.0 (2)
C3—C4—C5—C5i178.1 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O1ii0.85 (1)1.88 (1)2.725 (2)178 (2)
O2W—H2W2···O1i0.84 (1)1.96 (1)2.772 (2)161 (2)
O1W—H1W1···O2iii0.85 (1)1.91 (1)2.728 (2)162 (2)
O1W—H1W2···O2ii0.85 (1)1.84 (1)2.685 (2)171 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z1; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Mg(C12H8N2)(H2O)4](C8H5Cl2O2)2
Mr684.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)28.926 (1), 14.0447 (6), 7.6074 (3)
β (°) 94.785 (1)
V3)3079.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.867, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
10955, 3732, 2619
Rint0.021
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03
No. of reflections3732
No. of parameters207
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O1i0.849 (9)1.876 (9)2.725 (2)178 (2)
O2W—H2W2···O1ii0.841 (9)1.96 (1)2.772 (2)161 (2)
O1W—H1W1···O2iii0.851 (9)1.91 (1)2.728 (2)162 (2)
O1W—H1W2···O2i0.849 (9)1.84 (1)2.685 (2)171 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Guangdong Ocean University Project (No. 0612178 and No. 0612179), the Zhanjiang City Technology Tender Project (No. 0810014) and Guangdong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastellari, C., Comelli, F. & Ottani, S. (1999). Acta Cryst. C55, 1054–1056.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKopylovich, M. N., Pombeiro, A. J. L., Fischer, A., Kloo, L. & Kukushkin, V. Yu. (2003). Inorg. Chem. 42, 7239–7248.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSharma, R., Sharma, R. P., Balaa, R. & Kariuki, B. M. (2007). J. Mol. Struct. 826, 177–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J., Sun, C. & Jin, L. (2007). J. Mol. Struct. 832, 55–62.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds