metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-bi­pyrimidine-κ2N1,N1′)diperchloratocopper(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aState Key Laboratory Base of Novel Functional Materials & Prepation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 19 June 2008; accepted 9 July 2008; online 16 July 2008)

The central CuN4O2 motif of the title compound, [Cu(ClO4)2(C8H6N4)(C10H8N2)]n, exhibits a Jahn–Teller-distorted octa­hedral geometry around the metal centre, showing a considerably long Cu—O bond distance of 2.634 (4) Å towards the second perchlorate group occupying the sixth coordination site, giving a (4+1+1)-type coordination mode. The 4,4′-bipyridine (bipy) ligands are highly twisted with respect to each other, the dihedral angle between the two pyridyl ring planes being 38.9 (2)°. The bipy ligands act as bridging ligands between [Cu(ClO4)2(2,2′-bpym)] (2,2′-bpym is 2,2′-bipyrimidine) units, generating an infinite one-dimensional zigzag chain along [010]. Intra- and intermolecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related literature, see: Biradha & Fujita (2000[Biradha, K. & Fujita, M. (2000). J. Chem. Soc. Dalton Trans. pp. 3805-3810.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Hathaway (1973[Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-69.]); Kaye & Long (2008[Kaye, S. S. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 806-807.]); Kitagawa et al. (2006[Kitagawa, S., Noro, S.-I. & Nakamura, T. (2006). Chem. Commun. pp. 701-707.]); Subramanian & Zaworotko (1995[Subramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127-2129.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C8H6N4)(C10H8N2)]

  • Mr = 576.75

  • Monoclinic, P 21 /n

  • a = 11.334 (2) Å

  • b = 14.266 (3) Å

  • c = 13.299 (3) Å

  • β = 96.55 (3)°

  • V = 2136.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 295 (2) K

  • 0.32 × 0.26 × 0.15 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.815

  • 4265 measured reflections

  • 3686 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.160

  • S = 1.06

  • 3686 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O6i 0.93 2.59 3.415 (9) 147
C6—H6⋯O2ii 0.93 2.58 3.425 (7) 151
C7—H7⋯O3iii 0.93 2.58 3.189 (7) 124
C9—H9⋯O3 0.93 2.56 3.480 (7) 171
C9—H9⋯O4 0.93 2.49 3.185 (6) 132
C11—H11⋯O2iv 0.93 2.46 3.342 (6) 159
C16—H16⋯O4v 0.93 2.57 3.299 (6) 135
C17—H17⋯O8v 0.93 2.47 3.082 (6) 124
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A great deal of interest in self-assembly of coordination complexes with specific frameworks is expanding rapidly in view of their potentially useful magnetic, catalytic and nonlinear optical properties (Eddaoudi, et al., 2001; Kitagawa, et al., 2006; Kaye & Long, 2008). The ligand 4,4'-bipyridine is an ideal bridging ligand between transition metal atoms to establish coordination networks due to itss two potential binding sites that are arranged in a divergent (exo) fashion and its a rigid structure helping to predict network geometries (Subramanian & Zaworotko, 1995; Biradha & Fujita, 2000). 2,2'-bipyrimidine also is a versatile blocking and bridging ligand due to its N2 chelating sites on both sides of the ligand. Herein, we report a new complex with one-dimensional zigzag chains, (I), obtained by self-assembly from Cu(ClO4)2, 4,4'-bpy and 2,2'-bpym in DMF solution. 2,2'-bpym acts as a bidentate ligand with the second chelating site not coodinating the metal atom.

In the title compound, the Cu atom is located in a Jahn-Teller distorted octahedral coordination environment with four N atoms from one 2,2'-bpym ligand (N1, N2) and two 4,4'-bpy ligands [N5, N6#1 (#1 = 1/2 - x, 1/2 + y, 1/2 - z)] adopting a planar arrangement (d(Cu—N) = 1.998 (4)–2.008 (4) Å). The Cu(II) centre is displaced out of the N4 plane by 0.062 (2) Å in the direction of one of perchlorate ligand with d(Cu—O8) = 2.421 (4) Å. The O atom of the second perchlorate group occupies a sixth coordination site at a longer distance of 2.634 (4) Å, completing the overall (4 + 1 + 1) type coordination. O4 is situated slightly off the axial direct of the square pyramid, nevertheless it is close enough to the Cu atom (Hathaway, 1973). The complex can thus be interpreted of consisting of [(2,2'-bpym)Cu(ClO4)2] units attached to each other via 4,4'-bpy to give a zigzag one-dimensional chain along [010] with the chelating 2,2'-bpym ligands extending outwards. The pyrimidine rings of the 2,2'-bpym ligand are twisted relative to each other at 8.7 (1)°, while the dihedral angel of the pyridine rings of the 4,4'-bpy ligand is 38.9 (2)°. Another interesting feature of the structure is that the backbone of the 2,2'-bpym ligand extends sideways from either face of the 4,4'-bpy ribbon and intimately interlocks the interchain region that separates adjacent 4,4'-bpy ribbons (Fig. 2). The perchlorate groups exhibit weak intramolecular hydrogen bonds between the O atoms and the C atoms of the 4,4'-bpy ligands with d(C···O) = 3.082 (6)–3.480 (7) Å and <(C—H···O) = 124–171° (Table 1.). In addition, intermolecular C—H···O hydrogen bonds between the C atoms of the 2,2'-bpym and 4,4'-bpy ligands and the O atoms of the perchlorate groups (d(C···O) = 3.189 (7)–3.425 (7) Å and <(C—H···O) = 124–159°) are observed that are responsible for the three-dimensional supramolecular assembly.

Related literature top

For related literature, see: Biradha & Fujita (2000); Eddaoudi et al. (2001); Hathaway (1973); Kaye & Long (2008); Kitagawa et al. (2006); Subramanian & Zaworotko (1995).

Experimental top

Addition of 0.372 g (1.0 mmol) Cu(ClO4)2, 0.158 g (1.0 mmol) 4,4'-bipyridine and 0.158 g (1.0 mmol) 2,2'-bipyrimidine to a stirred DMF solution (30 ml) yielde a purple precipitate, which was refluxed for 2 h at 403 K followed by filtration after cooling. The resulting light-green filtrate was maintained at room temperature, slow evaporation afforded a small amount of purple block crystals two weeks later.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H distances at 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Schematic representation showing the interlocking of 2,2'-bpym rings of two strands resulting in an infinite one-dimensional sheet (perchlorates are omitted for clarity).
catena-Poly[[(2,2'-bipyrimidine- κ2N1,N1')diperchloratocopper(II)]- µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Cu(ClO4)2(C8H6N4)(C10H8N2)]F(000) = 1164
Mr = 576.75Dx = 1.793 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.334 (2) Åθ = 5.0–12.5°
b = 14.266 (3) ŵ = 1.34 mm1
c = 13.299 (3) ÅT = 295 K
β = 96.55 (3)°Block, purple
V = 2136.3 (8) Å30.32 × 0.26 × 0.15 mm
Z = 4
Data collection top
Bruker P4
diffractometer
2896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
θ/2θ scansh = 131
Absorption correction: multi-scan
(XSCANS; Siemens, 1996)
k = 116
Tmin = 0.664, Tmax = 0.815l = 1515
4265 measured reflections3 standard reflections every 97 reflections
3686 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0889P)2 + 4.3786P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(ClO4)2(C8H6N4)(C10H8N2)]V = 2136.3 (8) Å3
Mr = 576.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.334 (2) ŵ = 1.34 mm1
b = 14.266 (3) ÅT = 295 K
c = 13.299 (3) Å0.32 × 0.26 × 0.15 mm
β = 96.55 (3)°
Data collection top
Bruker P4
diffractometer
2896 reflections with I > 2σ(I)
Absorption correction: multi-scan
(XSCANS; Siemens, 1996)
Rint = 0.045
Tmin = 0.664, Tmax = 0.8153 standard reflections every 97 reflections
4265 measured reflections intensity decay: none
3686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.06Δρmax = 0.93 e Å3
3686 reflectionsΔρmin = 0.61 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.59615 (4)0.21166 (4)0.34471 (4)0.0296 (2)
Cl10.73943 (10)0.14413 (9)0.10813 (9)0.0398 (3)
Cl20.62782 (13)0.18070 (11)0.60732 (10)0.0534 (4)
N10.6774 (3)0.0876 (3)0.3709 (3)0.0331 (8)
N20.7638 (3)0.2575 (3)0.3759 (3)0.0299 (8)
N30.8653 (4)0.0233 (3)0.4312 (3)0.0459 (11)
N40.9612 (3)0.2015 (3)0.4100 (4)0.0460 (11)
N50.4387 (3)0.1567 (3)0.2901 (3)0.0309 (8)
N60.0235 (3)0.1609 (3)0.1722 (3)0.0307 (8)
C10.6283 (5)0.0024 (3)0.3741 (4)0.0429 (12)
H10.54710.00460.35570.051*
C20.6961 (6)0.0750 (4)0.4043 (5)0.0548 (15)
H20.66290.13460.40500.066*
C30.8144 (5)0.0602 (4)0.4332 (4)0.0518 (14)
H30.86140.11130.45530.062*
C40.7946 (4)0.0938 (3)0.3996 (3)0.0328 (10)
C50.8442 (4)0.1889 (3)0.3958 (3)0.0335 (10)
C60.9985 (4)0.2895 (4)0.4055 (5)0.0528 (15)
H61.07980.30090.41470.063*
C70.9233 (5)0.3644 (4)0.3880 (5)0.0562 (15)
H70.95160.42550.38580.067*
C80.8037 (4)0.3446 (4)0.3737 (4)0.0399 (11)
H80.74960.39350.36230.048*
C90.4280 (4)0.1042 (4)0.2051 (4)0.0386 (11)
H90.49100.10290.16610.046*
C100.3281 (4)0.0526 (3)0.1737 (4)0.0378 (11)
H100.32430.01660.11510.045*
C110.3444 (4)0.1639 (3)0.3396 (4)0.0336 (10)
H110.34860.20390.39510.040*
C120.2399 (4)0.1153 (3)0.3132 (4)0.0326 (10)
H120.17560.12280.35010.039*
C130.2324 (4)0.0551 (3)0.2310 (3)0.0295 (9)
C140.1326 (4)0.0117 (3)0.2077 (4)0.0316 (10)
C150.0802 (4)0.0526 (4)0.2857 (4)0.0383 (11)
H150.09560.02960.35140.046*
C160.0050 (4)0.1276 (3)0.2654 (4)0.0378 (11)
H160.02730.15620.31880.045*
C170.0193 (4)0.1170 (3)0.0946 (4)0.0348 (10)
H170.00410.13680.02870.042*
C180.0976 (4)0.0428 (3)0.1113 (3)0.0335 (10)
H180.12690.01370.05670.040*
O10.8332 (5)0.1061 (6)0.1735 (4)0.114 (2)
O20.7807 (4)0.1965 (3)0.0279 (3)0.0648 (12)
O30.6646 (5)0.0702 (3)0.0637 (4)0.0770 (14)
O40.6684 (3)0.2050 (3)0.1635 (3)0.0522 (10)
O50.5763 (7)0.1934 (7)0.6933 (5)0.140 (3)
O60.6507 (6)0.0798 (4)0.6044 (5)0.111 (2)
O70.7399 (5)0.2209 (5)0.6042 (5)0.100 (2)
O80.5503 (4)0.1986 (3)0.5175 (3)0.0596 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0195 (3)0.0221 (3)0.0458 (4)0.00049 (19)0.0030 (2)0.0002 (2)
Cl10.0354 (6)0.0419 (7)0.0432 (7)0.0003 (5)0.0089 (5)0.0013 (5)
Cl20.0532 (8)0.0679 (9)0.0384 (7)0.0110 (7)0.0023 (6)0.0033 (6)
N10.034 (2)0.0248 (19)0.040 (2)0.0037 (15)0.0016 (16)0.0017 (16)
N20.0261 (18)0.0251 (19)0.036 (2)0.0020 (15)0.0055 (15)0.0004 (15)
N30.044 (2)0.043 (2)0.051 (3)0.020 (2)0.007 (2)0.011 (2)
N40.0232 (19)0.051 (3)0.061 (3)0.0069 (18)0.0050 (18)0.000 (2)
N50.0236 (17)0.0280 (19)0.041 (2)0.0027 (15)0.0019 (15)0.0057 (16)
N60.0202 (16)0.0299 (19)0.041 (2)0.0021 (14)0.0016 (15)0.0023 (16)
C10.048 (3)0.029 (2)0.051 (3)0.003 (2)0.006 (2)0.001 (2)
C20.077 (4)0.030 (3)0.059 (4)0.007 (3)0.019 (3)0.006 (2)
C30.069 (4)0.035 (3)0.055 (3)0.023 (3)0.022 (3)0.012 (2)
C40.035 (2)0.033 (2)0.031 (2)0.0108 (19)0.0043 (18)0.0046 (18)
C50.028 (2)0.038 (3)0.033 (2)0.0066 (19)0.0029 (18)0.0033 (19)
C60.024 (2)0.058 (4)0.073 (4)0.005 (2)0.003 (2)0.008 (3)
C70.035 (3)0.043 (3)0.088 (5)0.008 (2)0.004 (3)0.004 (3)
C80.028 (2)0.037 (3)0.053 (3)0.001 (2)0.002 (2)0.003 (2)
C90.027 (2)0.045 (3)0.046 (3)0.008 (2)0.011 (2)0.011 (2)
C100.030 (2)0.039 (3)0.045 (3)0.007 (2)0.005 (2)0.007 (2)
C110.031 (2)0.026 (2)0.043 (3)0.0042 (18)0.0029 (19)0.0080 (19)
C120.027 (2)0.032 (2)0.039 (2)0.0031 (18)0.0076 (18)0.0071 (19)
C130.024 (2)0.027 (2)0.037 (2)0.0026 (17)0.0000 (17)0.0003 (18)
C140.0207 (19)0.029 (2)0.045 (3)0.0007 (17)0.0016 (18)0.0006 (19)
C150.031 (2)0.042 (3)0.042 (3)0.010 (2)0.0049 (19)0.005 (2)
C160.033 (2)0.041 (3)0.040 (3)0.011 (2)0.011 (2)0.002 (2)
C170.032 (2)0.032 (2)0.038 (3)0.0027 (19)0.0050 (19)0.000 (2)
C180.034 (2)0.033 (2)0.032 (2)0.0057 (19)0.0001 (18)0.0025 (19)
O10.077 (3)0.183 (7)0.078 (4)0.063 (4)0.006 (3)0.023 (4)
O20.071 (3)0.064 (3)0.065 (3)0.014 (2)0.036 (2)0.002 (2)
O30.089 (3)0.047 (2)0.099 (4)0.023 (2)0.028 (3)0.021 (2)
O40.052 (2)0.053 (2)0.055 (2)0.0009 (18)0.0210 (18)0.0097 (18)
O50.116 (5)0.254 (10)0.054 (3)0.016 (6)0.026 (3)0.011 (5)
O60.126 (5)0.068 (4)0.131 (5)0.011 (3)0.023 (4)0.034 (4)
O70.083 (4)0.130 (5)0.083 (4)0.041 (3)0.004 (3)0.015 (3)
O80.056 (2)0.078 (3)0.044 (2)0.021 (2)0.0044 (18)0.012 (2)
Geometric parameters (Å, º) top
Cu—N6i1.998 (4)C1—H10.9300
Cu—N12.007 (4)C2—C31.369 (9)
Cu—N22.008 (4)C2—H20.9300
Cu—N52.008 (4)C3—H30.9300
Cu—O82.421 (4)C4—C51.471 (7)
Cu—O42.634 (4)C6—C71.370 (8)
Cl1—O11.403 (5)C6—H60.9300
Cl1—O21.424 (4)C7—C81.377 (7)
Cl1—O31.438 (4)C7—H70.9300
Cl1—O41.442 (4)C8—H80.9300
Cl2—O51.354 (6)C9—C101.376 (6)
Cl2—O71.399 (6)C9—H90.9300
Cl2—O81.422 (4)C10—C131.395 (6)
Cl2—O61.464 (6)C10—H100.9300
N1—C11.339 (6)C11—C121.383 (6)
N1—C41.343 (6)C11—H110.9300
N2—C81.323 (6)C12—C131.385 (6)
N2—C51.343 (6)C12—H120.9300
N3—C41.325 (6)C13—C141.484 (6)
N3—C31.325 (7)C14—C181.372 (6)
N4—C61.329 (7)C14—C151.382 (7)
N4—C51.331 (6)C15—C161.376 (7)
N5—C111.321 (6)C15—H150.9300
N5—C91.350 (6)C16—H160.9300
N6—C161.332 (6)C17—C181.383 (6)
N6—C171.344 (6)C17—H170.9300
N6—Cuii1.998 (4)C18—H180.9300
C1—C21.379 (7)
N6i—Cu—N1175.53 (15)C2—C3—H3118.4
N6i—Cu—N295.45 (14)N3—C4—N1125.7 (4)
N1—Cu—N281.19 (15)N3—C4—C5119.4 (4)
N6i—Cu—N588.66 (15)N1—C4—C5114.9 (4)
N1—Cu—N595.15 (15)N4—C5—N2124.9 (5)
N2—Cu—N5169.48 (15)N4—C5—C4119.9 (4)
N6i—Cu—O892.65 (15)N2—C5—C4115.2 (4)
N1—Cu—O884.89 (15)N4—C6—C7123.4 (5)
N2—Cu—O897.45 (15)N4—C6—H6118.3
N5—Cu—O892.00 (15)C7—C6—H6118.3
N6i—Cu—O495.57 (14)C6—C7—C8116.6 (5)
N1—Cu—O486.74 (14)C6—C7—H7121.7
N2—Cu—O479.35 (14)C8—C7—H7121.7
N5—Cu—O490.64 (14)N2—C8—C7121.5 (5)
O8—Cu—O4171.41 (13)N2—C8—H8119.2
O1—Cl1—O2112.1 (4)C7—C8—H8119.2
O1—Cl1—O3109.9 (4)N5—C9—C10122.9 (4)
O2—Cl1—O3107.8 (3)N5—C9—H9118.5
O1—Cl1—O4110.2 (3)C10—C9—H9118.5
O2—Cl1—O4108.5 (3)C9—C10—C13119.0 (4)
O3—Cl1—O4108.3 (3)C9—C10—H10120.5
O5—Cl2—O7116.8 (5)C13—C10—H10120.5
O5—Cl2—O8113.6 (4)N5—C11—C12123.5 (4)
O7—Cl2—O8112.2 (3)N5—C11—H11118.2
O5—Cl2—O6104.4 (5)C12—C11—H11118.2
O7—Cl2—O6103.8 (4)C11—C12—C13119.0 (4)
O8—Cl2—O6104.4 (3)C11—C12—H12120.5
C1—N1—C4116.9 (4)C13—C12—H12120.5
C1—N1—Cu128.4 (3)C12—C13—C10117.7 (4)
C4—N1—Cu114.2 (3)C12—C13—C14122.6 (4)
C8—N2—C5117.6 (4)C10—C13—C14119.4 (4)
C8—N2—Cu128.2 (3)C18—C14—C15117.5 (4)
C5—N2—Cu114.1 (3)C18—C14—C13122.3 (4)
C4—N3—C3116.1 (5)C15—C14—C13119.8 (4)
C6—N4—C5116.0 (4)C16—C15—C14119.3 (5)
C11—N5—C9117.4 (4)C16—C15—H15120.3
C11—N5—Cu121.7 (3)C14—C15—H15120.3
C9—N5—Cu120.7 (3)N6—C16—C15122.6 (4)
C16—N6—C17118.6 (4)N6—C16—H16118.7
C16—N6—Cuii118.8 (3)C15—C16—H16118.7
C17—N6—Cuii121.2 (3)N6—C17—C18121.0 (4)
N1—C1—C2121.1 (5)N6—C17—H17119.5
N1—C1—H1119.5C18—C17—H17119.5
C2—C1—H1119.5C14—C18—C17120.6 (4)
C3—C2—C1117.0 (5)C14—C18—H18119.7
C3—C2—H2121.5C17—C18—H18119.7
C1—C2—H2121.5Cl1—O4—Cu137.6 (2)
N3—C3—C2123.2 (5)Cl2—O8—Cu129.2 (2)
N3—C3—H3118.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O6iii0.932.593.415 (9)147
C6—H6···O2iv0.932.583.425 (7)151
C7—H7···O3v0.932.583.189 (7)124
C9—H9···O30.932.563.480 (7)171
C9—H9···O40.932.493.185 (6)132
C11—H11···O2vi0.932.463.342 (6)159
C16—H16···O4ii0.932.573.299 (6)135
C17—H17···O8ii0.932.473.082 (6)124
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C8H6N4)(C10H8N2)]
Mr576.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.334 (2), 14.266 (3), 13.299 (3)
β (°) 96.55 (3)
V3)2136.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.32 × 0.26 × 0.15
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.664, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
4265, 3686, 2896
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.160, 1.06
No. of reflections3686
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.61

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O6i0.932.593.415 (9)147
C6—H6···O2ii0.932.583.425 (7)151
C7—H7···O3iii0.932.583.189 (7)124
C9—H9···O30.932.563.480 (7)171
C9—H9···O40.932.493.185 (6)132
C11—H11···O2iv0.932.463.342 (6)159
C16—H16···O4v0.932.573.299 (6)135
C17—H17···O8v0.932.473.082 (6)124
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061) and the Newer Training Program Foundation for Talents of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020).

References

First citationBiradha, K. & Fujita, M. (2000). J. Chem. Soc. Dalton Trans. pp. 3805–3810.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–69.  CrossRef CAS Google Scholar
First citationKaye, S. S. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 806–807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Noro, S.-I. & Nakamura, T. (2006). Chem. Commun. pp. 701–707.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127–2129.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds