organic compounds
N-(Benzothiazol-2-yl)butyramide
aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com
The title compound, C11H12N2OS, was synthesized from 2-aminobenzothiazole and butanoyl chloride in anhydrous acetone. In the molecules are linked by N—H⋯N and C—H⋯O hydrogen bonds and by C—H⋯π interactions.
Related literature
For related literature, see: Butt et al. (2005); Im & Jung (2000); Yang et al. (2002); Ataei et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808020667/im2075sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020667/im2075Isup2.hkl
A mixture of butanoyl chloride (0.1 mol) and 2-aminobenzothiazole (0.1 mol) in anhydrous acetone (75 ml) was refluxed for 20 h. After cooling, the reaction mixture was poured in acidified cold water. The resulting dark brown solid was filtered and washed with cold acetone. Crystals of the title compound (I) suitable for X-Ray analysis were obtained after re-crystallization of the solid from ethanol (2.36 g, 79%). m.p.447 K.
The NH hydrogen was refined freely. Methyl H atoms were included on the basis of an idealized rigid group (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Ellipsoids represent 50% probability levels. | |
Fig. 2. Packing diagram of I showing classical and "weak" H bonds and S···S contacts as thin dashed bonds. View direction is perpendicular to [102]. |
C11H12N2OS | Z = 2 |
Mr = 220.29 | F(000) = 232 |
Triclinic, P1 | Dx = 1.435 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2916 (4) Å | Cell parameters from 4460 reflections |
b = 7.4462 (8) Å | θ = 2.9–30.7° |
c = 13.565 (1) Å | µ = 0.29 mm−1 |
α = 92.618 (7)° | T = 100 K |
β = 90.607 (6)° | Plate, yellow |
γ = 107.185 (8)° | 0.35 × 0.20 × 0.05 mm |
V = 509.92 (8) Å3 |
Oxford Diffraction Xcalibur S diffractometer | 2728 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2172 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.1057 pixels mm-1 | θmax = 30.0°, θmin = 2.9° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −9→10 |
Tmin = 0.977, Tmax = 1.000 | l = −19→18 |
8577 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0544P)2] |
2728 reflections | (Δ/σ)max = 0.001 |
141 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C11H12N2OS | γ = 107.185 (8)° |
Mr = 220.29 | V = 509.92 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.2916 (4) Å | Mo Kα radiation |
b = 7.4462 (8) Å | µ = 0.29 mm−1 |
c = 13.565 (1) Å | T = 100 K |
α = 92.618 (7)° | 0.35 × 0.20 × 0.05 mm |
β = 90.607 (6)° |
Oxford Diffraction Xcalibur S diffractometer | 2728 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2172 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 1.000 | Rint = 0.035 |
8577 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.41 e Å−3 |
2728 reflections | Δρmin = −0.26 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Non-bonded distance 3.5267 (0.0007) S - S_$2 $2 - x + 2, -y + 1, -z + 1 Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 2.9402 (0.0016) x + 6.9014 (0.0013) y + 2.6739 (0.0017) z = 1.5591 (0.0012) * -0.0482 (0.0011) N1 * -0.0353 (0.0010) N2 * 0.0176 (0.0010) O * -0.0420 (0.0006) S * 0.0121 (0.0012) C1 * 0.0438 (0.0012) C2 * 0.0205 (0.0013) C3 * 0.0008 (0.0013) C4 * -0.0386 (0.0013) C5 * -0.0125 (0.0012) C6 * 0.0334 (0.0011) C7 * 0.0608 (0.0012) C8 * 0.0306 (0.0012) C9 * -0.0160 (0.0011) C10 * -0.0269 (0.0012) C11 Rms deviation of fitted atoms = 0.0332 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3005 (2) | 0.17657 (16) | 0.43971 (8) | 0.0115 (2) | |
H1 | 0.142 (3) | 0.110 (2) | 0.4321 (11) | 0.019 (4)* | |
N2 | 0.2856 (2) | 0.10743 (16) | 0.60669 (8) | 0.0110 (2) | |
O | 0.65683 (18) | 0.36649 (14) | 0.36601 (7) | 0.0168 (2) | |
S | 0.74719 (6) | 0.32370 (5) | 0.55350 (2) | 0.01216 (11) | |
C1 | 0.2219 (3) | 0.2887 (2) | 0.08646 (10) | 0.0186 (3) | |
H1A | 0.1669 | 0.1526 | 0.0710 | 0.028* | |
H1B | 0.3186 | 0.3540 | 0.0309 | 0.028* | |
H1C | 0.0653 | 0.3306 | 0.0981 | 0.028* | |
C2 | 0.4007 (3) | 0.3337 (2) | 0.17869 (9) | 0.0141 (3) | |
H2A | 0.5602 | 0.2931 | 0.1665 | 0.017* | |
H2B | 0.4589 | 0.4715 | 0.1934 | 0.017* | |
C3 | 0.2581 (2) | 0.2353 (2) | 0.26720 (9) | 0.0120 (3) | |
H3A | 0.1017 | 0.2794 | 0.2799 | 0.014* | |
H3B | 0.1935 | 0.0983 | 0.2506 | 0.014* | |
C4 | 0.4267 (2) | 0.26838 (19) | 0.35982 (9) | 0.0118 (3) | |
C5 | 0.4162 (2) | 0.19131 (19) | 0.53257 (9) | 0.0102 (3) | |
C6 | 0.4520 (2) | 0.14896 (19) | 0.69100 (9) | 0.0109 (3) | |
C7 | 0.3830 (3) | 0.0893 (2) | 0.78621 (9) | 0.0130 (3) | |
H7 | 0.2093 | 0.0123 | 0.7986 | 0.016* | |
C8 | 0.5711 (3) | 0.1442 (2) | 0.86165 (9) | 0.0142 (3) | |
H8 | 0.5244 | 0.1051 | 0.9264 | 0.017* | |
C9 | 0.8288 (3) | 0.2560 (2) | 0.84506 (10) | 0.0145 (3) | |
H9 | 0.9547 | 0.2907 | 0.8983 | 0.017* | |
C10 | 0.9017 (3) | 0.3166 (2) | 0.75156 (10) | 0.0133 (3) | |
H10 | 1.0764 | 0.3922 | 0.7395 | 0.016* | |
C11 | 0.7103 (3) | 0.26286 (19) | 0.67562 (9) | 0.0110 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0082 (5) | 0.0137 (6) | 0.0107 (5) | 0.0002 (5) | −0.0016 (4) | 0.0019 (4) |
N2 | 0.0099 (5) | 0.0118 (6) | 0.0109 (5) | 0.0026 (4) | 0.0002 (4) | 0.0006 (4) |
O | 0.0122 (4) | 0.0210 (6) | 0.0135 (5) | −0.0013 (4) | 0.0001 (4) | 0.0041 (4) |
S | 0.00957 (16) | 0.0143 (2) | 0.01083 (16) | 0.00062 (12) | 0.00010 (11) | 0.00174 (12) |
C1 | 0.0215 (7) | 0.0210 (8) | 0.0123 (6) | 0.0046 (6) | −0.0013 (5) | 0.0027 (6) |
C2 | 0.0137 (6) | 0.0167 (8) | 0.0120 (6) | 0.0043 (6) | 0.0009 (5) | 0.0029 (5) |
C3 | 0.0106 (6) | 0.0132 (7) | 0.0118 (6) | 0.0030 (5) | −0.0010 (5) | 0.0010 (5) |
C4 | 0.0130 (6) | 0.0107 (7) | 0.0122 (6) | 0.0041 (5) | 0.0009 (5) | 0.0006 (5) |
C5 | 0.0104 (6) | 0.0090 (7) | 0.0116 (6) | 0.0034 (5) | 0.0000 (4) | 0.0006 (5) |
C6 | 0.0115 (6) | 0.0102 (7) | 0.0120 (6) | 0.0048 (5) | −0.0003 (5) | −0.0007 (5) |
C7 | 0.0116 (6) | 0.0137 (7) | 0.0139 (6) | 0.0036 (5) | 0.0018 (5) | 0.0025 (5) |
C8 | 0.0164 (6) | 0.0166 (8) | 0.0110 (6) | 0.0067 (6) | 0.0008 (5) | 0.0024 (5) |
C9 | 0.0142 (6) | 0.0155 (8) | 0.0142 (6) | 0.0055 (5) | −0.0040 (5) | −0.0007 (5) |
C10 | 0.0123 (6) | 0.0125 (7) | 0.0148 (6) | 0.0036 (5) | −0.0012 (5) | −0.0004 (5) |
C11 | 0.0120 (6) | 0.0111 (7) | 0.0108 (6) | 0.0048 (5) | 0.0009 (4) | 0.0013 (5) |
N1—C4 | 1.3788 (16) | C9—C10 | 1.3858 (18) |
N1—C5 | 1.3803 (16) | C10—C11 | 1.3956 (18) |
N2—C5 | 1.3022 (16) | N1—H1 | 0.841 (17) |
N2—C6 | 1.4015 (16) | C1—H1A | 0.9800 |
O—C4 | 1.2209 (16) | C1—H1B | 0.9800 |
S—C11 | 1.7351 (13) | C1—H1C | 0.9800 |
S—C5 | 1.7501 (13) | C2—H2A | 0.9900 |
C1—C2 | 1.5238 (18) | C2—H2B | 0.9900 |
C2—C3 | 1.5236 (17) | C3—H3A | 0.9900 |
C3—C4 | 1.5011 (17) | C3—H3B | 0.9900 |
C6—C7 | 1.4019 (17) | C7—H7 | 0.9500 |
C6—C11 | 1.4027 (18) | C8—H8 | 0.9500 |
C7—C8 | 1.3802 (18) | C9—H9 | 0.9500 |
C8—C9 | 1.3988 (19) | C10—H10 | 0.9500 |
C4—N1—C5 | 123.92 (11) | C2—C1—H1B | 109.5 |
C5—N2—C6 | 108.90 (10) | H1A—C1—H1B | 109.5 |
C11—S—C5 | 87.62 (6) | C2—C1—H1C | 109.5 |
C3—C2—C1 | 111.29 (11) | H1A—C1—H1C | 109.5 |
C4—C3—C2 | 113.98 (11) | H1B—C1—H1C | 109.5 |
O—C4—N1 | 121.46 (12) | C3—C2—H2A | 109.4 |
O—C4—C3 | 124.23 (11) | C1—C2—H2A | 109.4 |
N1—C4—C3 | 114.30 (11) | C3—C2—H2B | 109.4 |
N2—C5—N1 | 121.66 (11) | C1—C2—H2B | 109.4 |
N2—C5—S | 118.00 (9) | H2A—C2—H2B | 108.0 |
N1—C5—S | 120.34 (9) | C4—C3—H3A | 108.8 |
N2—C6—C7 | 126.34 (12) | C2—C3—H3A | 108.8 |
N2—C6—C11 | 114.83 (11) | C4—C3—H3B | 108.8 |
C7—C6—C11 | 118.83 (12) | C2—C3—H3B | 108.8 |
C8—C7—C6 | 119.00 (12) | H3A—C3—H3B | 107.7 |
C7—C8—C9 | 121.58 (12) | C8—C7—H7 | 120.5 |
C10—C9—C8 | 120.45 (12) | C6—C7—H7 | 120.5 |
C9—C10—C11 | 117.88 (12) | C7—C8—H8 | 119.2 |
C10—C11—C6 | 122.25 (12) | C9—C8—H8 | 119.2 |
C10—C11—S | 127.12 (10) | C10—C9—H9 | 119.8 |
C6—C11—S | 110.63 (9) | C8—C9—H9 | 119.8 |
C4—N1—H1 | 118.4 (11) | C9—C10—H10 | 121.1 |
C5—N1—H1 | 117.7 (11) | C11—C10—H10 | 121.1 |
C2—C1—H1A | 109.5 | ||
C1—C2—C3—C4 | 177.95 (12) | N2—C6—C7—C8 | −179.52 (13) |
C5—N1—C4—O | 2.2 (2) | C11—C6—C7—C8 | −0.1 (2) |
C5—N1—C4—C3 | −178.25 (12) | C6—C7—C8—C9 | −0.6 (2) |
C2—C3—C4—O | 0.8 (2) | C7—C8—C9—C10 | 0.6 (2) |
C2—C3—C4—N1 | −178.73 (11) | C8—C9—C10—C11 | 0.2 (2) |
C6—N2—C5—N1 | −179.44 (12) | C9—C10—C11—C6 | −1.0 (2) |
C6—N2—C5—S | 0.99 (15) | C9—C10—C11—S | 178.35 (10) |
C4—N1—C5—N2 | 177.35 (12) | N2—C6—C11—C10 | −179.60 (12) |
C4—N1—C5—S | −3.09 (18) | C7—C6—C11—C10 | 0.9 (2) |
C11—S—C5—N2 | −0.39 (11) | N2—C6—C11—S | 0.99 (15) |
C11—S—C5—N1 | −179.97 (12) | C7—C6—C11—S | −178.49 (10) |
C5—N2—C6—C7 | 178.19 (13) | C5—S—C11—C10 | −179.73 (14) |
C5—N2—C6—C11 | −1.25 (17) | C5—S—C11—C6 | −0.35 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.84 (2) | 2.40 (2) | 3.232 (2) | 172 (1) |
C10—H10···Oii | 0.95 | 2.46 | 3.277 (2) | 144 |
C2—H2B···Cent(C6–C11)iii | 0.99 | 2.66 | 3.56 | 152 |
C3—H3B···Cent(C6–C11)iv | 0.99 | 2.64 | 3.47 | 142 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H12N2OS |
Mr | 220.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2916 (4), 7.4462 (8), 13.565 (1) |
α, β, γ (°) | 92.618 (7), 90.607 (6), 107.185 (8) |
V (Å3) | 509.92 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.35 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.977, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8577, 2728, 2172 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.091, 0.99 |
No. of reflections | 2728 |
No. of parameters | 141 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.26 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.84 (2) | 2.40 (2) | 3.232 (2) | 172 (1) |
C10—H10···Oii | 0.95 | 2.46 | 3.277 (2) | 144.1 |
C2—H2B···Cent(C6–C11)iii | 0.99 | 2.66 | 3.56 | 152 |
C3—H3B···Cent(C6–C11)iv | 0.99 | 2.64 | 3.47 | 142 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1. |
Acknowledgements
The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for providing the research and analytical laboratory facilities.
References
Ataei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491–499. Web of Science CrossRef Google Scholar
Butt, M.-S., Akhter, Z., Zafer-uz-Zaman, M. & Munir, A. (2005). Eur. Polym. J. 41, 1638–1646. Web of Science CrossRef CAS Google Scholar
Im, J.-K. & Jung, J.-C. (2000). Polymer, 41, 8709–8716. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Yang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245–250. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
High temperature polymers have received much attention due to the increasing demands for the replacement of ceramics and metals (Ataei et al., 2005). However, in many cases, they are insoluble and do not melt below their decomposition temperature,which restricts their applications (Im & Jung, 2000). Thus, many studies have focused on obtaining aromatic polymers that are processable by conventional techniques (Yang et al., 2002). The title compound, (I), is a precursor for an attempt to synthesize polyimides (Butt et al., 2005), imidazole derivatives and transition metal complexes. The entire molecule (except H atoms) is planar within a mean deviation of 0.03 Å. Molecules are connected in ribbons parallel to [210] by classical hydrogen bonds N1—H1···N2 and additional weak hydrogen bonds C10—H10···O. S atoms of neighbouring molecules approach each other to 3.5267 (7) Å. Perpendicular to the ribbons are two C—H···π interactions (Table 1, Fig.2). The molecular structure of the title compound is depicted in Figure 1.