organic compounds
Methyl 2-(7-benzyloxy-1-naphthyl)-2-oxoacetate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the 20H16O4, the naphthalene ring system makes dihedral angles of 43.79 (7) and 83.70 (9)°, respectively, with the mean planes of the phenyl ring and the acetate unit. C—H⋯π interactions involving all the aromatic six-membered rings are observed. The molecules are stacked into columns along the a axis and adjacent columns are linked by weak C—H⋯O interactions.
of the title compound, CRelated literature
For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For values of bond lengths, see: Allen et al. (1987). For related literature on bioactivities of compounds containing aromatic rings, see, for example: Hartwig (1998); Knepper et al. (2004); Kunz et al. (2003); Ley & Thomas (2003); Palucki et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S160053680801982X/is2310sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801982X/is2310Isup2.hkl
The title compound was synthesized by stirring a mixture of methyl 2-(2-hydroxynaphthalen-8-yl)-2-oxoacetate (1.0 g, 4.3 mmol), 3-A° molecular sieves (2.0 g), potassium carbonate (0.7 g, 5.1 mmol) and benzyl bromide (0.75 g, 4.4 mmol) in dry DMF (35 ml) for 24 h, after which it was filtered and the filtrate evaporated. The residue was recrystallized from ether–n-hexane mixture (2:1 v/v) to give the desired compound (I) (1.10 g, 80% yield). Single crystals suitable for X-ray
were obtained by slow evaporation of the solvent from an ether–n-hexane solution (m.p. 358 K).All H atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. A total of 1721 Friedel pairs were merged before final
as there is no large for the determination of the absolute configuration.Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The weak C—H···O intramolecular interaction is shown as a dashed line. | |
Fig. 2. The crystal packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines. |
C20H16O4 | Dx = 1.385 Mg m−3 |
Mr = 320.33 | Melting point: 358 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2575 reflections |
a = 5.6145 (3) Å | θ = 1.8–30.0° |
b = 15.7422 (8) Å | µ = 0.10 mm−1 |
c = 17.3843 (8) Å | T = 100 K |
V = 1536.50 (13) Å3 | Plate, colourless |
Z = 4 | 0.58 × 0.32 × 0.10 mm |
F(000) = 672 |
Bruker SMART APEXII CCD area-detector diffractometer | 2575 independent reflections |
Radiation source: fine-focus sealed tube | 2380 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 8.33 pixels mm-1 | θmax = 30.0°, θmin = 1.8° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −22→22 |
Tmin = 0.946, Tmax = 0.991 | l = −22→24 |
17379 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2831P] where P = (Fo2 + 2Fc2)/3 |
2575 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C20H16O4 | V = 1536.50 (13) Å3 |
Mr = 320.33 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.6145 (3) Å | µ = 0.10 mm−1 |
b = 15.7422 (8) Å | T = 100 K |
c = 17.3843 (8) Å | 0.58 × 0.32 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2575 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2380 reflections with I > 2σ(I) |
Tmin = 0.946, Tmax = 0.991 | Rint = 0.039 |
17379 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.29 e Å−3 |
2575 reflections | Δρmin = −0.17 e Å−3 |
218 parameters |
Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3014 (2) | 0.54915 (8) | 0.63643 (7) | 0.0236 (3) | |
O2 | 0.8876 (3) | 0.51454 (8) | 0.43322 (7) | 0.0253 (3) | |
O3 | 1.0904 (3) | 0.35791 (8) | 0.33767 (8) | 0.0268 (3) | |
O4 | 1.3439 (2) | 0.46196 (8) | 0.37431 (7) | 0.0222 (3) | |
C1 | 0.4708 (3) | 0.48752 (10) | 0.63241 (10) | 0.0189 (3) | |
C2 | 0.4861 (4) | 0.43676 (10) | 0.69963 (10) | 0.0223 (3) | |
H2A | 0.3821 | 0.4459 | 0.7404 | 0.027* | |
C3 | 0.6541 (3) | 0.37447 (10) | 0.70417 (10) | 0.0213 (3) | |
H3A | 0.6623 | 0.3409 | 0.7481 | 0.026* | |
C4 | 0.8161 (3) | 0.35991 (10) | 0.64334 (9) | 0.0187 (3) | |
C5 | 0.9937 (4) | 0.29689 (10) | 0.64975 (10) | 0.0218 (3) | |
H5A | 1.0026 | 0.2646 | 0.6944 | 0.026* | |
C6 | 1.1535 (3) | 0.28219 (10) | 0.59170 (10) | 0.0226 (4) | |
H6A | 1.2696 | 0.2405 | 0.5970 | 0.027* | |
C7 | 1.1400 (3) | 0.33079 (10) | 0.52406 (10) | 0.0209 (3) | |
H7A | 1.2462 | 0.3199 | 0.4842 | 0.025* | |
C8 | 0.9712 (3) | 0.39479 (10) | 0.51538 (9) | 0.0182 (3) | |
C9 | 0.8007 (3) | 0.41091 (10) | 0.57529 (9) | 0.0171 (3) | |
C10 | 0.6209 (3) | 0.47439 (9) | 0.57108 (9) | 0.0177 (3) | |
H10A | 0.6048 | 0.5070 | 0.5268 | 0.021* | |
C11 | 0.2839 (3) | 0.60828 (10) | 0.57358 (9) | 0.0192 (3) | |
H11A | 0.2236 | 0.5798 | 0.5281 | 0.023* | |
H11B | 0.4396 | 0.6316 | 0.5618 | 0.023* | |
C12 | 0.1165 (3) | 0.67811 (10) | 0.59753 (9) | 0.0183 (3) | |
C13 | 0.1697 (3) | 0.76264 (10) | 0.57956 (10) | 0.0202 (3) | |
H13A | 0.3105 | 0.7757 | 0.5540 | 0.024* | |
C14 | 0.0126 (3) | 0.82699 (10) | 0.59983 (10) | 0.0212 (3) | |
H14A | 0.0485 | 0.8830 | 0.5875 | 0.025* | |
C15 | −0.1971 (3) | 0.80841 (10) | 0.63826 (10) | 0.0219 (3) | |
H15A | −0.3026 | 0.8517 | 0.6510 | 0.026* | |
C16 | −0.2495 (3) | 0.72467 (11) | 0.65769 (10) | 0.0219 (3) | |
H16A | −0.3884 | 0.7120 | 0.6845 | 0.026* | |
C17 | −0.0931 (3) | 0.66001 (10) | 0.63687 (10) | 0.0198 (3) | |
H17A | −0.1293 | 0.6040 | 0.6494 | 0.024* | |
C18 | 0.9888 (3) | 0.44716 (10) | 0.44555 (10) | 0.0187 (3) | |
C19 | 1.1476 (3) | 0.41483 (10) | 0.38003 (9) | 0.0189 (3) | |
C20 | 1.4989 (4) | 0.44233 (11) | 0.30990 (10) | 0.0232 (3) | |
H20A | 1.6051 | 0.4891 | 0.3010 | 0.035* | |
H20B | 1.4044 | 0.4326 | 0.2647 | 0.035* | |
H20C | 1.5899 | 0.3923 | 0.3214 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0271 (7) | 0.0212 (5) | 0.0224 (6) | 0.0087 (5) | 0.0058 (5) | 0.0049 (5) |
O2 | 0.0272 (7) | 0.0212 (5) | 0.0274 (6) | 0.0057 (5) | 0.0047 (6) | 0.0037 (5) |
O3 | 0.0274 (7) | 0.0242 (6) | 0.0287 (6) | −0.0045 (6) | 0.0028 (6) | −0.0071 (5) |
O4 | 0.0216 (6) | 0.0225 (5) | 0.0224 (6) | −0.0041 (5) | 0.0035 (5) | −0.0030 (5) |
C1 | 0.0202 (8) | 0.0157 (6) | 0.0207 (7) | 0.0022 (6) | 0.0002 (7) | 0.0000 (6) |
C2 | 0.0264 (9) | 0.0206 (7) | 0.0198 (7) | 0.0030 (7) | 0.0034 (7) | 0.0013 (6) |
C3 | 0.0265 (9) | 0.0190 (7) | 0.0185 (7) | 0.0011 (7) | −0.0011 (7) | 0.0026 (6) |
C4 | 0.0216 (8) | 0.0146 (6) | 0.0198 (7) | −0.0004 (6) | −0.0027 (7) | −0.0008 (6) |
C5 | 0.0270 (9) | 0.0175 (7) | 0.0210 (8) | 0.0019 (7) | −0.0059 (7) | 0.0012 (6) |
C6 | 0.0238 (9) | 0.0171 (7) | 0.0268 (8) | 0.0036 (6) | −0.0041 (7) | −0.0003 (6) |
C7 | 0.0201 (8) | 0.0192 (7) | 0.0233 (8) | 0.0015 (7) | −0.0001 (7) | −0.0027 (6) |
C8 | 0.0189 (8) | 0.0159 (6) | 0.0199 (7) | −0.0004 (6) | −0.0004 (6) | −0.0014 (6) |
C9 | 0.0188 (7) | 0.0142 (6) | 0.0183 (7) | −0.0013 (6) | −0.0013 (6) | −0.0020 (5) |
C10 | 0.0196 (8) | 0.0158 (7) | 0.0177 (7) | 0.0006 (6) | −0.0014 (6) | 0.0006 (6) |
C11 | 0.0218 (8) | 0.0184 (7) | 0.0175 (7) | 0.0026 (6) | 0.0002 (6) | 0.0015 (6) |
C12 | 0.0189 (8) | 0.0187 (7) | 0.0174 (7) | 0.0017 (6) | −0.0029 (6) | −0.0014 (6) |
C13 | 0.0218 (8) | 0.0197 (7) | 0.0192 (7) | −0.0006 (6) | −0.0003 (7) | 0.0018 (6) |
C14 | 0.0268 (9) | 0.0156 (7) | 0.0210 (7) | −0.0003 (7) | −0.0033 (7) | −0.0001 (6) |
C15 | 0.0244 (9) | 0.0202 (7) | 0.0211 (8) | 0.0046 (7) | −0.0018 (7) | −0.0032 (6) |
C16 | 0.0193 (8) | 0.0248 (8) | 0.0216 (8) | 0.0010 (7) | −0.0004 (7) | −0.0011 (6) |
C17 | 0.0194 (8) | 0.0177 (6) | 0.0224 (8) | −0.0003 (6) | −0.0020 (7) | 0.0009 (6) |
C18 | 0.0183 (7) | 0.0177 (7) | 0.0201 (7) | −0.0021 (6) | 0.0007 (6) | −0.0021 (6) |
C19 | 0.0185 (8) | 0.0167 (6) | 0.0214 (7) | 0.0007 (6) | 0.0000 (6) | 0.0012 (6) |
C20 | 0.0202 (8) | 0.0262 (8) | 0.0232 (8) | −0.0001 (7) | 0.0046 (7) | 0.0009 (6) |
O1—C1 | 1.361 (2) | C8—C18 | 1.471 (2) |
O1—C11 | 1.4387 (19) | C9—C10 | 1.422 (2) |
O2—C18 | 1.222 (2) | C10—H10A | 0.9300 |
O3—C19 | 1.204 (2) | C11—C12 | 1.505 (2) |
O4—C19 | 1.332 (2) | C11—H11A | 0.9700 |
O4—C20 | 1.452 (2) | C11—H11B | 0.9700 |
C1—C10 | 1.375 (2) | C12—C17 | 1.391 (2) |
C1—C2 | 1.418 (2) | C12—C13 | 1.399 (2) |
C2—C3 | 1.363 (2) | C13—C14 | 1.389 (2) |
C2—H2A | 0.9300 | C13—H13A | 0.9300 |
C3—C4 | 1.414 (2) | C14—C15 | 1.385 (3) |
C3—H3A | 0.9300 | C14—H14A | 0.9300 |
C4—C5 | 1.411 (2) | C15—C16 | 1.392 (2) |
C4—C9 | 1.432 (2) | C15—H15A | 0.9300 |
C5—C6 | 1.370 (3) | C16—C17 | 1.392 (2) |
C5—H5A | 0.9300 | C16—H16A | 0.9300 |
C6—C7 | 1.405 (2) | C17—H17A | 0.9300 |
C6—H6A | 0.9300 | C18—C19 | 1.534 (2) |
C7—C8 | 1.391 (2) | C20—H20A | 0.9600 |
C7—H7A | 0.9300 | C20—H20B | 0.9600 |
C8—C9 | 1.437 (2) | C20—H20C | 0.9600 |
C1—O1—C11 | 118.03 (13) | C12—C11—H11A | 110.2 |
C19—O4—C20 | 115.80 (13) | O1—C11—H11B | 110.2 |
O1—C1—C10 | 125.14 (14) | C12—C11—H11B | 110.2 |
O1—C1—C2 | 113.69 (15) | H11A—C11—H11B | 108.5 |
C10—C1—C2 | 121.15 (15) | C17—C12—C13 | 119.04 (16) |
C3—C2—C1 | 119.68 (16) | C17—C12—C11 | 120.99 (15) |
C3—C2—H2A | 120.2 | C13—C12—C11 | 119.97 (16) |
C1—C2—H2A | 120.2 | C14—C13—C12 | 120.11 (17) |
C2—C3—C4 | 121.24 (15) | C14—C13—H13A | 119.9 |
C2—C3—H3A | 119.4 | C12—C13—H13A | 119.9 |
C4—C3—H3A | 119.4 | C15—C14—C13 | 120.55 (15) |
C5—C4—C3 | 120.65 (15) | C15—C14—H14A | 119.7 |
C5—C4—C9 | 120.12 (16) | C13—C14—H14A | 119.7 |
C3—C4—C9 | 119.22 (14) | C14—C15—C16 | 119.77 (16) |
C6—C5—C4 | 121.56 (15) | C14—C15—H15A | 120.1 |
C6—C5—H5A | 119.2 | C16—C15—H15A | 120.1 |
C4—C5—H5A | 119.2 | C17—C16—C15 | 119.75 (17) |
C5—C6—C7 | 119.30 (16) | C17—C16—H16A | 120.1 |
C5—C6—H6A | 120.4 | C15—C16—H16A | 120.1 |
C7—C6—H6A | 120.4 | C12—C17—C16 | 120.77 (15) |
C8—C7—C6 | 121.45 (17) | C12—C17—H17A | 119.6 |
C8—C7—H7A | 119.3 | C16—C17—H17A | 119.6 |
C6—C7—H7A | 119.3 | O2—C18—C8 | 126.88 (16) |
C7—C8—C9 | 120.19 (15) | O2—C18—C19 | 115.34 (15) |
C7—C8—C18 | 116.73 (15) | C8—C18—C19 | 117.78 (14) |
C9—C8—C18 | 122.94 (15) | O3—C19—O4 | 126.16 (16) |
C10—C9—C4 | 118.63 (15) | O3—C19—C18 | 123.10 (16) |
C10—C9—C8 | 124.02 (14) | O4—C19—C18 | 110.59 (14) |
C4—C9—C8 | 117.35 (14) | O4—C20—H20A | 109.5 |
C1—C10—C9 | 120.05 (14) | O4—C20—H20B | 109.5 |
C1—C10—H10A | 120.0 | H20A—C20—H20B | 109.5 |
C9—C10—H10A | 120.0 | O4—C20—H20C | 109.5 |
O1—C11—C12 | 107.76 (13) | H20A—C20—H20C | 109.5 |
O1—C11—H11A | 110.2 | H20B—C20—H20C | 109.5 |
C11—O1—C1—C10 | −3.3 (2) | C4—C9—C10—C1 | 1.9 (2) |
C11—O1—C1—C2 | 175.28 (15) | C8—C9—C10—C1 | −177.56 (15) |
O1—C1—C2—C3 | −177.83 (16) | C1—O1—C11—C12 | −170.20 (14) |
C10—C1—C2—C3 | 0.8 (3) | O1—C11—C12—C17 | −42.1 (2) |
C1—C2—C3—C4 | 0.7 (3) | O1—C11—C12—C13 | 138.51 (16) |
C2—C3—C4—C5 | 178.08 (17) | C17—C12—C13—C14 | −1.0 (3) |
C2—C3—C4—C9 | −0.9 (3) | C11—C12—C13—C14 | 178.34 (15) |
C3—C4—C5—C6 | −179.53 (16) | C12—C13—C14—C15 | 0.3 (3) |
C9—C4—C5—C6 | −0.6 (3) | C13—C14—C15—C16 | 0.9 (3) |
C4—C5—C6—C7 | −0.2 (3) | C14—C15—C16—C17 | −1.4 (3) |
C5—C6—C7—C8 | 1.4 (3) | C13—C12—C17—C16 | 0.5 (3) |
C6—C7—C8—C9 | −1.9 (3) | C11—C12—C17—C16 | −178.85 (16) |
C6—C7—C8—C18 | 174.04 (15) | C15—C16—C17—C12 | 0.7 (3) |
C5—C4—C9—C10 | −179.41 (15) | C7—C8—C18—O2 | −166.30 (17) |
C3—C4—C9—C10 | −0.4 (2) | C9—C8—C18—O2 | 9.5 (3) |
C5—C4—C9—C8 | 0.1 (2) | C7—C8—C18—C19 | 14.4 (2) |
C3—C4—C9—C8 | 179.09 (15) | C9—C8—C18—C19 | −169.81 (15) |
C7—C8—C9—C10 | −179.42 (15) | C20—O4—C19—O3 | 0.8 (2) |
C18—C8—C9—C10 | 4.9 (3) | C20—O4—C19—C18 | −174.75 (13) |
C7—C8—C9—C4 | 1.1 (2) | O2—C18—C19—O3 | −103.8 (2) |
C18—C8—C9—C4 | −174.57 (15) | C8—C18—C19—O3 | 75.6 (2) |
O1—C1—C10—C9 | 176.33 (15) | O2—C18—C19—O4 | 71.91 (19) |
C2—C1—C10—C9 | −2.1 (3) | C8—C18—C19—O4 | −108.69 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O2 | 0.93 | 2.28 | 2.896 (2) | 124 |
C14—H14A···O2i | 0.93 | 2.52 | 3.315 (2) | 144 |
C20—H20B···O1ii | 0.96 | 2.53 | 3.458 (2) | 163 |
C7—H7A···Cg2iii | 0.93 | 3.15 | 3.8529 (18) | 134 |
C13—H13A···Cg3iv | 0.93 | 3.13 | 3.8070 (19) | 132 |
C17—H17A···Cg1v | 0.93 | 3.12 | 4.0033 (17) | 159 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x+3/2, −y+1, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) −x, y+3/2, −z+3/2; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H16O4 |
Mr | 320.33 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.6145 (3), 15.7422 (8), 17.3843 (8) |
V (Å3) | 1536.50 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.58 × 0.32 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.946, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17379, 2575, 2380 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.100, 1.08 |
No. of reflections | 2575 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.17 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O2 | 0.93 | 2.2763 | 2.896 (2) | 124 |
C14—H14A···O2i | 0.93 | 2.5211 | 3.315 (2) | 144 |
C20—H20B···O1ii | 0.96 | 2.5278 | 3.458 (2) | 163 |
C7—H7A···Cg2iii | 0.93 | 3.1463 | 3.8529 (18) | 134 |
C13—H13A···Cg3iv | 0.93 | 3.1249 | 3.8070 (19) | 132 |
C17—H17A···Cg1v | 0.93 | 3.1191 | 4.0033 (17) | 159 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x+3/2, −y+1, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) −x, y+3/2, −z+3/2; (v) x−1, y, z. |
Acknowledgements
The authors gratefully acknowledge the financial assistance of Beijing Normal University. The authors also thank the Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046–2067. CrossRef CAS Google Scholar
Knepper, K., Lormann, M. E. P. & Brase, S. (2004). J. Comb. Chem. 6, 460–463. Web of Science CrossRef PubMed CAS Google Scholar
Kunz, K., Scholz, U. & Ganzer, D. (2003). Synlett, pp. 2428–2439. Web of Science CrossRef Google Scholar
Ley, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400–5049. Web of Science CrossRef CAS Google Scholar
Palucki, M., Wolfe, J. P. & Buchwald, S. L. (1997). J. Am. Chem. Soc. 119, 3395–3396. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ether compounds containing aromatic rings are useful intermediates in organic synthesis and are found in a large number of biologically active compounds. Some ethers containing aromatic units such as perrottetines, riccardin B and marchantin quinone exert considerable pharmacological activities, such as influencing blood coagulation. Others found usage as antifungal peperazinomycin and the glycopeptide antibiotics vancomycin (Hartwig, 1998; Knepper et al., 2004; Kunz et al., 2003; Ley & Thomas, 2003; Palucki et al., 1997). Williamson reaction is a useful method to prepare ether compounds. In the case of the reaction between phenol and alkyl halide, phenols readily react with a mild base like potasuim carbonate to form phenoxide ions, which then substitute the –X group in the alkyl halide, forming an ether with an aryl group attached to it. In our ongoing project to synthesize novel ether compounds which can be used for biological research, we report herein the synthesis and crystal structure of the title compound, (I).
In the asymmetric unit of (I) in Fig. 1, the naphthalene ring is planar, with a maximum deviation of 0.0184 (18) Å for atom C1. The dihedral angle between the phenyl and naphthalene rings is 43.79 (7)°. The benzyloxy group (O1/C11–C17) is (-)anti-periplanar (-ap) and attached to the C1–C4/C9–C10 ring with C1—O1—C11—C12 torsion angle of -170.20 (14)°. Atoms O3, O4, C19 and C20 lie on the one plane whereas atoms O2, C8, C18 and C19 lie on the another plane. The dihedral angle between these two planes is 73.14 (12)°. The dihedral angle between the mean plane through the O3/O4/C19/C20 plane and naphthalene ring is 83.70 (9)°. The conformation of the oxyacetate unit is (-)anti-clinal (-ac) with C8—C18—C19—O4 torsion angle of -108.69 (16)°. A weak C10—H10A···O2 interaction generates a S(6) ring motif (Bernstein et al., 1995). Bond distances and angles have normal values (Allen et al., 1987).
The crystal packing of (I) in Fig. 2, shows that the molecules are stacked into column along the a axis and the adjacent columns were linked by weak C—H···O interactions. The crystal is stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of C1–C4/C9–C10, C4–C9 and C12–C17 rings, respectively.