organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(7-benz­yl­oxy-1-naphth­yl)-2-oxo­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 25 June 2008; accepted 29 June 2008; online 5 July 2008)

In the crystal structure of the title compound, C20H16O4, the naphthalene ring system makes dihedral angles of 43.79 (7) and 83.70 (9)°, respectively, with the mean planes of the phenyl ring and the acetate unit. C—H⋯π inter­actions involving all the aromatic six-membered rings are observed. The mol­ecules are stacked into columns along the a axis and adjacent columns are linked by weak C—H⋯O inter­actions.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on bioactivities of compounds containing aromatic rings, see, for example: Hartwig (1998[Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046-2067.]); Knepper et al. (2004[Knepper, K., Lormann, M. E. P. & Brase, S. (2004). J. Comb. Chem. 6, 460-463.]); Kunz et al. (2003[Kunz, K., Scholz, U. & Ganzer, D. (2003). Synlett, pp. 2428-2439.]); Ley & Thomas (2003[Ley, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400-5049.]); Palucki et al. (1997[Palucki, M., Wolfe, J. P. & Buchwald, S. L. (1997). J. Am. Chem. Soc. 119, 3395-3396.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O4

  • Mr = 320.33

  • Orthorhombic, P 21 21 21

  • a = 5.6145 (3) Å

  • b = 15.7422 (8) Å

  • c = 17.3843 (8) Å

  • V = 1536.50 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.32 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.991

  • 17379 measured reflections

  • 2575 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.08

  • 2575 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C4/C9–C10, C4–C9 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2 0.93 2.28 2.896 (2) 124
C14—H14A⋯O2i 0.93 2.52 3.315 (2) 144
C20—H20B⋯O1ii 0.96 2.53 3.458 (2) 163
C7—H7ACg2iii 0.93 3.15 3.8529 (18) 134
C13—H13ACg3iv 0.93 3.13 3.8070 (19) 132
C17—H17ACg1v 0.93 3.12 4.0033 (17) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Ether compounds containing aromatic rings are useful intermediates in organic synthesis and are found in a large number of biologically active compounds. Some ethers containing aromatic units such as perrottetines, riccardin B and marchantin quinone exert considerable pharmacological activities, such as influencing blood coagulation. Others found usage as antifungal peperazinomycin and the glycopeptide antibiotics vancomycin (Hartwig, 1998; Knepper et al., 2004; Kunz et al., 2003; Ley & Thomas, 2003; Palucki et al., 1997). Williamson reaction is a useful method to prepare ether compounds. In the case of the reaction between phenol and alkyl halide, phenols readily react with a mild base like potasuim carbonate to form phenoxide ions, which then substitute the –X group in the alkyl halide, forming an ether with an aryl group attached to it. In our ongoing project to synthesize novel ether compounds which can be used for biological research, we report herein the synthesis and crystal structure of the title compound, (I).

In the asymmetric unit of (I) in Fig. 1, the naphthalene ring is planar, with a maximum deviation of 0.0184 (18) Å for atom C1. The dihedral angle between the phenyl and naphthalene rings is 43.79 (7)°. The benzyloxy group (O1/C11–C17) is (-)anti-periplanar (-ap) and attached to the C1–C4/C9–C10 ring with C1—O1—C11—C12 torsion angle of -170.20 (14)°. Atoms O3, O4, C19 and C20 lie on the one plane whereas atoms O2, C8, C18 and C19 lie on the another plane. The dihedral angle between these two planes is 73.14 (12)°. The dihedral angle between the mean plane through the O3/O4/C19/C20 plane and naphthalene ring is 83.70 (9)°. The conformation of the oxyacetate unit is (-)anti-clinal (-ac) with C8—C18—C19—O4 torsion angle of -108.69 (16)°. A weak C10—H10A···O2 interaction generates a S(6) ring motif (Bernstein et al., 1995). Bond distances and angles have normal values (Allen et al., 1987).

The crystal packing of (I) in Fig. 2, shows that the molecules are stacked into column along the a axis and the adjacent columns were linked by weak C—H···O interactions. The crystal is stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of C1–C4/C9–C10, C4–C9 and C12–C17 rings, respectively.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For values of bond lengths, see: Allen et al. (1987). For related literature on bioactivities of compounds containing aromatic rings, see, for example: Hartwig (1998); Knepper et al. (2004); Kunz et al. (2003); Ley & Thomas (2003); Palucki et al. (1997). Cg1, Cg2 and Cg3 are the centroids of the C1–C4/C9–C10, C4–C9 and C12–C17 rings, respectively.

Experimental top

The title compound was synthesized by stirring a mixture of methyl 2-(2-hydroxynaphthalen-8-yl)-2-oxoacetate (1.0 g, 4.3 mmol), 3-A° molecular sieves (2.0 g), potassium carbonate (0.7 g, 5.1 mmol) and benzyl bromide (0.75 g, 4.4 mmol) in dry DMF (35 ml) for 24 h, after which it was filtered and the filtrate evaporated. The residue was recrystallized from ether–n-hexane mixture (2:1 v/v) to give the desired compound (I) (1.10 g, 80% yield). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvent from an ether–n-hexane solution (m.p. 358 K).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. A total of 1721 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The weak C—H···O intramolecular interaction is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.
Methyl 2-(7-benzyloxy-1-naphthyl)-2-oxoacetate top
Crystal data top
C20H16O4Dx = 1.385 Mg m3
Mr = 320.33Melting point: 358 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2575 reflections
a = 5.6145 (3) Åθ = 1.8–30.0°
b = 15.7422 (8) ŵ = 0.10 mm1
c = 17.3843 (8) ÅT = 100 K
V = 1536.50 (13) Å3Plate, colourless
Z = 40.58 × 0.32 × 0.10 mm
F(000) = 672
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2575 independent reflections
Radiation source: fine-focus sealed tube2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2222
Tmin = 0.946, Tmax = 0.991l = 2224
17379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2831P]
where P = (Fo2 + 2Fc2)/3
2575 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H16O4V = 1536.50 (13) Å3
Mr = 320.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6145 (3) ŵ = 0.10 mm1
b = 15.7422 (8) ÅT = 100 K
c = 17.3843 (8) Å0.58 × 0.32 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2575 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2380 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.991Rint = 0.039
17379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2575 reflectionsΔρmin = 0.17 e Å3
218 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3014 (2)0.54915 (8)0.63643 (7)0.0236 (3)
O20.8876 (3)0.51454 (8)0.43322 (7)0.0253 (3)
O31.0904 (3)0.35791 (8)0.33767 (8)0.0268 (3)
O41.3439 (2)0.46196 (8)0.37431 (7)0.0222 (3)
C10.4708 (3)0.48752 (10)0.63241 (10)0.0189 (3)
C20.4861 (4)0.43676 (10)0.69963 (10)0.0223 (3)
H2A0.38210.44590.74040.027*
C30.6541 (3)0.37447 (10)0.70417 (10)0.0213 (3)
H3A0.66230.34090.74810.026*
C40.8161 (3)0.35991 (10)0.64334 (9)0.0187 (3)
C50.9937 (4)0.29689 (10)0.64975 (10)0.0218 (3)
H5A1.00260.26460.69440.026*
C61.1535 (3)0.28219 (10)0.59170 (10)0.0226 (4)
H6A1.26960.24050.59700.027*
C71.1400 (3)0.33079 (10)0.52406 (10)0.0209 (3)
H7A1.24620.31990.48420.025*
C80.9712 (3)0.39479 (10)0.51538 (9)0.0182 (3)
C90.8007 (3)0.41091 (10)0.57529 (9)0.0171 (3)
C100.6209 (3)0.47439 (9)0.57108 (9)0.0177 (3)
H10A0.60480.50700.52680.021*
C110.2839 (3)0.60828 (10)0.57358 (9)0.0192 (3)
H11A0.22360.57980.52810.023*
H11B0.43960.63160.56180.023*
C120.1165 (3)0.67811 (10)0.59753 (9)0.0183 (3)
C130.1697 (3)0.76264 (10)0.57956 (10)0.0202 (3)
H13A0.31050.77570.55400.024*
C140.0126 (3)0.82699 (10)0.59983 (10)0.0212 (3)
H14A0.04850.88300.58750.025*
C150.1971 (3)0.80841 (10)0.63826 (10)0.0219 (3)
H15A0.30260.85170.65100.026*
C160.2495 (3)0.72467 (11)0.65769 (10)0.0219 (3)
H16A0.38840.71200.68450.026*
C170.0931 (3)0.66001 (10)0.63687 (10)0.0198 (3)
H17A0.12930.60400.64940.024*
C180.9888 (3)0.44716 (10)0.44555 (10)0.0187 (3)
C191.1476 (3)0.41483 (10)0.38003 (9)0.0189 (3)
C201.4989 (4)0.44233 (11)0.30990 (10)0.0232 (3)
H20A1.60510.48910.30100.035*
H20B1.40440.43260.26470.035*
H20C1.58990.39230.32140.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (7)0.0212 (5)0.0224 (6)0.0087 (5)0.0058 (5)0.0049 (5)
O20.0272 (7)0.0212 (5)0.0274 (6)0.0057 (5)0.0047 (6)0.0037 (5)
O30.0274 (7)0.0242 (6)0.0287 (6)0.0045 (6)0.0028 (6)0.0071 (5)
O40.0216 (6)0.0225 (5)0.0224 (6)0.0041 (5)0.0035 (5)0.0030 (5)
C10.0202 (8)0.0157 (6)0.0207 (7)0.0022 (6)0.0002 (7)0.0000 (6)
C20.0264 (9)0.0206 (7)0.0198 (7)0.0030 (7)0.0034 (7)0.0013 (6)
C30.0265 (9)0.0190 (7)0.0185 (7)0.0011 (7)0.0011 (7)0.0026 (6)
C40.0216 (8)0.0146 (6)0.0198 (7)0.0004 (6)0.0027 (7)0.0008 (6)
C50.0270 (9)0.0175 (7)0.0210 (8)0.0019 (7)0.0059 (7)0.0012 (6)
C60.0238 (9)0.0171 (7)0.0268 (8)0.0036 (6)0.0041 (7)0.0003 (6)
C70.0201 (8)0.0192 (7)0.0233 (8)0.0015 (7)0.0001 (7)0.0027 (6)
C80.0189 (8)0.0159 (6)0.0199 (7)0.0004 (6)0.0004 (6)0.0014 (6)
C90.0188 (7)0.0142 (6)0.0183 (7)0.0013 (6)0.0013 (6)0.0020 (5)
C100.0196 (8)0.0158 (7)0.0177 (7)0.0006 (6)0.0014 (6)0.0006 (6)
C110.0218 (8)0.0184 (7)0.0175 (7)0.0026 (6)0.0002 (6)0.0015 (6)
C120.0189 (8)0.0187 (7)0.0174 (7)0.0017 (6)0.0029 (6)0.0014 (6)
C130.0218 (8)0.0197 (7)0.0192 (7)0.0006 (6)0.0003 (7)0.0018 (6)
C140.0268 (9)0.0156 (7)0.0210 (7)0.0003 (7)0.0033 (7)0.0001 (6)
C150.0244 (9)0.0202 (7)0.0211 (8)0.0046 (7)0.0018 (7)0.0032 (6)
C160.0193 (8)0.0248 (8)0.0216 (8)0.0010 (7)0.0004 (7)0.0011 (6)
C170.0194 (8)0.0177 (6)0.0224 (8)0.0003 (6)0.0020 (7)0.0009 (6)
C180.0183 (7)0.0177 (7)0.0201 (7)0.0021 (6)0.0007 (6)0.0021 (6)
C190.0185 (8)0.0167 (6)0.0214 (7)0.0007 (6)0.0000 (6)0.0012 (6)
C200.0202 (8)0.0262 (8)0.0232 (8)0.0001 (7)0.0046 (7)0.0009 (6)
Geometric parameters (Å, º) top
O1—C11.361 (2)C8—C181.471 (2)
O1—C111.4387 (19)C9—C101.422 (2)
O2—C181.222 (2)C10—H10A0.9300
O3—C191.204 (2)C11—C121.505 (2)
O4—C191.332 (2)C11—H11A0.9700
O4—C201.452 (2)C11—H11B0.9700
C1—C101.375 (2)C12—C171.391 (2)
C1—C21.418 (2)C12—C131.399 (2)
C2—C31.363 (2)C13—C141.389 (2)
C2—H2A0.9300C13—H13A0.9300
C3—C41.414 (2)C14—C151.385 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.411 (2)C15—C161.392 (2)
C4—C91.432 (2)C15—H15A0.9300
C5—C61.370 (3)C16—C171.392 (2)
C5—H5A0.9300C16—H16A0.9300
C6—C71.405 (2)C17—H17A0.9300
C6—H6A0.9300C18—C191.534 (2)
C7—C81.391 (2)C20—H20A0.9600
C7—H7A0.9300C20—H20B0.9600
C8—C91.437 (2)C20—H20C0.9600
C1—O1—C11118.03 (13)C12—C11—H11A110.2
C19—O4—C20115.80 (13)O1—C11—H11B110.2
O1—C1—C10125.14 (14)C12—C11—H11B110.2
O1—C1—C2113.69 (15)H11A—C11—H11B108.5
C10—C1—C2121.15 (15)C17—C12—C13119.04 (16)
C3—C2—C1119.68 (16)C17—C12—C11120.99 (15)
C3—C2—H2A120.2C13—C12—C11119.97 (16)
C1—C2—H2A120.2C14—C13—C12120.11 (17)
C2—C3—C4121.24 (15)C14—C13—H13A119.9
C2—C3—H3A119.4C12—C13—H13A119.9
C4—C3—H3A119.4C15—C14—C13120.55 (15)
C5—C4—C3120.65 (15)C15—C14—H14A119.7
C5—C4—C9120.12 (16)C13—C14—H14A119.7
C3—C4—C9119.22 (14)C14—C15—C16119.77 (16)
C6—C5—C4121.56 (15)C14—C15—H15A120.1
C6—C5—H5A119.2C16—C15—H15A120.1
C4—C5—H5A119.2C17—C16—C15119.75 (17)
C5—C6—C7119.30 (16)C17—C16—H16A120.1
C5—C6—H6A120.4C15—C16—H16A120.1
C7—C6—H6A120.4C12—C17—C16120.77 (15)
C8—C7—C6121.45 (17)C12—C17—H17A119.6
C8—C7—H7A119.3C16—C17—H17A119.6
C6—C7—H7A119.3O2—C18—C8126.88 (16)
C7—C8—C9120.19 (15)O2—C18—C19115.34 (15)
C7—C8—C18116.73 (15)C8—C18—C19117.78 (14)
C9—C8—C18122.94 (15)O3—C19—O4126.16 (16)
C10—C9—C4118.63 (15)O3—C19—C18123.10 (16)
C10—C9—C8124.02 (14)O4—C19—C18110.59 (14)
C4—C9—C8117.35 (14)O4—C20—H20A109.5
C1—C10—C9120.05 (14)O4—C20—H20B109.5
C1—C10—H10A120.0H20A—C20—H20B109.5
C9—C10—H10A120.0O4—C20—H20C109.5
O1—C11—C12107.76 (13)H20A—C20—H20C109.5
O1—C11—H11A110.2H20B—C20—H20C109.5
C11—O1—C1—C103.3 (2)C4—C9—C10—C11.9 (2)
C11—O1—C1—C2175.28 (15)C8—C9—C10—C1177.56 (15)
O1—C1—C2—C3177.83 (16)C1—O1—C11—C12170.20 (14)
C10—C1—C2—C30.8 (3)O1—C11—C12—C1742.1 (2)
C1—C2—C3—C40.7 (3)O1—C11—C12—C13138.51 (16)
C2—C3—C4—C5178.08 (17)C17—C12—C13—C141.0 (3)
C2—C3—C4—C90.9 (3)C11—C12—C13—C14178.34 (15)
C3—C4—C5—C6179.53 (16)C12—C13—C14—C150.3 (3)
C9—C4—C5—C60.6 (3)C13—C14—C15—C160.9 (3)
C4—C5—C6—C70.2 (3)C14—C15—C16—C171.4 (3)
C5—C6—C7—C81.4 (3)C13—C12—C17—C160.5 (3)
C6—C7—C8—C91.9 (3)C11—C12—C17—C16178.85 (16)
C6—C7—C8—C18174.04 (15)C15—C16—C17—C120.7 (3)
C5—C4—C9—C10179.41 (15)C7—C8—C18—O2166.30 (17)
C3—C4—C9—C100.4 (2)C9—C8—C18—O29.5 (3)
C5—C4—C9—C80.1 (2)C7—C8—C18—C1914.4 (2)
C3—C4—C9—C8179.09 (15)C9—C8—C18—C19169.81 (15)
C7—C8—C9—C10179.42 (15)C20—O4—C19—O30.8 (2)
C18—C8—C9—C104.9 (3)C20—O4—C19—C18174.75 (13)
C7—C8—C9—C41.1 (2)O2—C18—C19—O3103.8 (2)
C18—C8—C9—C4174.57 (15)C8—C18—C19—O375.6 (2)
O1—C1—C10—C9176.33 (15)O2—C18—C19—O471.91 (19)
C2—C1—C10—C92.1 (3)C8—C18—C19—O4108.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.932.282.896 (2)124
C14—H14A···O2i0.932.523.315 (2)144
C20—H20B···O1ii0.962.533.458 (2)163
C7—H7A···Cg2iii0.933.153.8529 (18)134
C13—H13A···Cg3iv0.933.133.8070 (19)132
C17—H17A···Cg1v0.933.124.0033 (17)159
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+1, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+3/2, z+3/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H16O4
Mr320.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.6145 (3), 15.7422 (8), 17.3843 (8)
V3)1536.50 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.32 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
17379, 2575, 2380
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.08
No. of reflections2575
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O20.932.27632.896 (2)124
C14—H14A···O2i0.932.52113.315 (2)144
C20—H20B···O1ii0.962.52783.458 (2)163
C7—H7A···Cg2iii0.933.14633.8529 (18)134
C13—H13A···Cg3iv0.933.12493.8070 (19)132
C17—H17A···Cg1v0.933.11914.0033 (17)159
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+1, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y+3/2, z+3/2; (v) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

§Current address: Department of Chemistry, Handan College, Handan, Hebei 056005, People's Republic of China.

Acknowledgements

The authors gratefully acknowledge the financial assistance of Beijing Normal University. The authors also thank the Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046–2067.  CrossRef CAS Google Scholar
First citationKnepper, K., Lormann, M. E. P. & Brase, S. (2004). J. Comb. Chem. 6, 460–463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunz, K., Scholz, U. & Ganzer, D. (2003). Synlett, pp. 2428–2439.  Web of Science CrossRef Google Scholar
First citationLey, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400–5049.  Web of Science CrossRef CAS Google Scholar
First citationPalucki, M., Wolfe, J. P. & Buchwald, S. L. (1997). J. Am. Chem. Soc. 119, 3395–3396.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds