organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1453-o1454

1-Methyl-2-[(E)-2-(2-thien­yl)ethen­yl]quinolinium iodide

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 1 July 2008; accepted 4 July 2008; online 9 July 2008)

In the title compound, C16H14NS+·I, the cation has an E configuration about the C=C double bond of the ethyl­ene unit. The dihedral angle between the thio­phene ring and the quinolinium ring system is 11.67 (11)°. A weak C—H⋯S intra­molecular inter­action involving the thio­phene ring generates an S(5) ring motif. In the crystal structure, the iodide ion, located between the cations arranged in an anti­parallel manner, forms weak C—H⋯I inter­actions. The crystal structure is further stabilized by a ππ inter­action between the thio­phene and pyridine rings; the centroid–centroid distance is 3.6818 (13) Å.

Related literature

For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see, for example: Chantrapromma et al. (2006[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2006). Acta Cryst. E62, o4004-o4006.], 2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.]); Chantrapromma, Jindawong & Fun (2007[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020-o2022.]); Chantrapromma, Jindawong, Fun & Patil (2007[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321-o2323.]). For background literature on non-linear optical properties, see, for example: Chou et al. (1996[Chou, S.-S. P., Sun, D.-J., Huang, J.-Y., Yang, P.-K. & Lin, H.-C. (1996). Tetrahedron, 37, 7279-7282.]); Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88-95.]); Drost et al. (1995[Drost, K. J., Jen, A. K.-J. & Rao, V. P. (1995). Chemtech, 25, 16-25.]); Morley (1991[Morley, J. O. (1991). J. Chem. Soc. Faraday Trans. 87, 3009-3013.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14NS+·I

  • Mr = 379.25

  • Triclinic, [P \overline 1]

  • a = 7.8243 (1) Å

  • b = 9.6906 (1) Å

  • c = 10.7633 (2) Å

  • α = 97.521 (1)°

  • β = 95.338 (1)°

  • γ = 112.758 (1)°

  • V = 736.82 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.28 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.346, Tmax = 0.725

  • 17060 measured reflections

  • 4261 independent reflections

  • 4118 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.10

  • 4261 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯S1 0.93 2.80 3.189 (2) 106
C11—H11A⋯I1i 0.93 3.06 3.934 (2) 157
C16—H16B⋯I1ii 0.96 3.06 3.962 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The design and synthesis of conjugated compounds to search for second-order nonlinear optic (NLO) materials have generated extensive interest. From previous reports, both molecular orbital calculations (Morley, 1991) and experimental studies (Drost et al., 1995) have revealed that the products of dipole moment and molecular hyperpolarizability (υβ) of thiophene-containing conjugated moieties are superior to that of benzene analogues. Based on this reason we have previously studied the compound containing thiophene unit, namely, 1-methyl-4-[(E)-2-(2-thienyl)ethenyl]-pyridinium 4-chlorobenzenesulfonate (Chantrapromma et al., 2008). In this paper we have synthesized the title compound which was designed by the replacement of the cationic 3-hydroxy-4-methoxyphenyl ring that is present in a compound possessing second-harmonic-generation (SHG) properties, 2-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1methylquinolinium, iodide monohydrate (Chantrapromma, Jindawong, Fun & Patil, 2007) by the thiophene unit. Herein we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of the C16H14NS+ cation and I- ion. The cation exists in the E configuration with respect to the C10C11 double bond [1.350 (3) Å] and is almost planar with the interplanar angle between the quinolinium and the thiophene ring being 11.67 (11)° and the torsion angles C9–C10–C11–C12 = -178.56 (17)°. The ethenyl unit is co-planar with the thiophene ring as can be indicated by the torsion angles C10–C11–C12–C13 = -179.42 (18)° and C10–C11–C12–S1 = 1.4 (3)°. It is slightly deviated from the quinolinium ring with the torsion angle C8–C9–C10–C11 = -14.2 (3)°. The atom S1 of the thiophene ring contributes to the C—H···S intramolecular weak interaction (Fig. 1 and Table 1) forming S(5) ring motifs (Bernstein et al., 1995). The bond lengths and angles are normal (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma et al., 2006, 2008; Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007).

In the crystal packing (Fig. 2), the I- ion is in between each pair of the two antiparallel cations and is linked with the cations through weak C—H···I interactions. The crystal is stabilized by weak C—H···S and C—H···I interactions (Table 1). A ππ interaction was observed with the Cg1···Cg2 distance of 3.6818 (13) Å; Cg1i and Cg2i are the centroids of the S1/C12–C15 and N1/C1/C6–C9 rings, respectively [symmetry code: (i): 1 - x, 1 - y, 1 - z]. The perpendicular distances of Cg2 onto the plane of the S1/C12–C15 ring and Cg1 onto the plane of the N1/C1/C6–C9 ring are 3.200 and 3.500Å, respectively

Related literature top

For bond lengths, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Chantrapromma et al. (2006, 2008); Chantrapromma, Jindawong & Fun (2007); Chantrapromma, Jindawong, Fun & Patil (2007). For background literature on non-linear optic properties, see, for example: Chou et al. (1996); Dittrich et al. (2003); Drost et al. (1995); Morley (1991).

Experimental top

2-(2-Thiophenestyryl)-1-methylquinilinium iodide was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.0 mmol), 2-thiophenecarboxaldehyde (0.64 ml, 7.0 mmol) and piperidine (0.69 ml, 7.0 mmol) in hot methanol (40 ml). The resulting solution was refluxed for 5 hr under a nitrogen atmosphere. The resultant solid was filtered off and washed with diethyl ether. Brown block-shaped single crystals of the title compound suitable for x-ray structure determination were obtained after recrystalization from methanol by slow evaporation of the solvent at room temperature after a few weeks.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. The highest residual electron density peak is located at 0.75 Å from atom I1 and the deepest hole is located at 0.38 Å from atom S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. The weak C—H···S intramolecular interaction was drawn as a dashed line.
[Figure 2] Fig. 2. The packing diagram of the title structure, viewed approximately along the b axis. Weak C—H···I interactions were drawn as dashed lines.
1-Methyl-2-[(E)-2-(2-thienyl)ethenyl]quinolinium iodide top
Crystal data top
C16H14NS+·IZ = 2
Mr = 379.25F(000) = 372
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8243 (1) ÅCell parameters from 4261 reflections
b = 9.6906 (1) Åθ = 2.3–30.0°
c = 10.7633 (2) ŵ = 2.30 mm1
α = 97.521 (1)°T = 100 K
β = 95.338 (1)°Block, brown
γ = 112.758 (1)°0.58 × 0.28 × 0.14 mm
V = 736.82 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4261 independent reflections
Radiation source: fine-focus sealed tube4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.346, Tmax = 0.725l = 1515
17060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.8519P]
where P = (Fo2 + 2Fc2)/3
4261 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C16H14NS+·Iγ = 112.758 (1)°
Mr = 379.25V = 736.82 (2) Å3
Triclinic, P1Z = 2
a = 7.8243 (1) ÅMo Kα radiation
b = 9.6906 (1) ŵ = 2.30 mm1
c = 10.7633 (2) ÅT = 100 K
α = 97.521 (1)°0.58 × 0.28 × 0.14 mm
β = 95.338 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4118 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.725Rint = 0.018
17060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.10Δρmax = 1.50 e Å3
4261 reflectionsΔρmin = 0.90 e Å3
173 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.681003 (17)0.790360 (14)0.269777 (12)0.02186 (5)
S10.65928 (8)0.89200 (6)0.69144 (6)0.02828 (11)
N10.0896 (2)0.54762 (17)0.31586 (15)0.0162 (3)
C10.0473 (3)0.4405 (2)0.21950 (17)0.0167 (3)
C20.1289 (3)0.4838 (2)0.11749 (18)0.0198 (3)
H2A0.09450.58630.11380.024*
C30.2600 (3)0.3734 (2)0.02336 (19)0.0227 (4)
H3A0.31280.40250.04410.027*
C40.3158 (3)0.2180 (2)0.02687 (19)0.0227 (4)
H4A0.40340.14520.03820.027*
C50.2405 (3)0.1739 (2)0.12667 (19)0.0206 (3)
H5A0.27810.07110.12970.025*
C60.1062 (3)0.2843 (2)0.22486 (18)0.0180 (3)
C70.0267 (3)0.2412 (2)0.32868 (18)0.0193 (3)
H7A0.06860.13910.33570.023*
C80.1112 (3)0.3491 (2)0.41844 (18)0.0180 (3)
H8A0.16440.31980.48550.022*
C90.1745 (2)0.5058 (2)0.41052 (17)0.0161 (3)
C100.3282 (3)0.6203 (2)0.50081 (18)0.0175 (3)
H10A0.38380.71740.48220.021*
C110.3950 (3)0.5929 (2)0.61089 (17)0.0174 (3)
H11A0.33990.49460.62730.021*
C120.5444 (3)0.7036 (2)0.70463 (18)0.0177 (3)
C130.6158 (3)0.6721 (2)0.82202 (19)0.0217 (4)
H13A0.57520.57760.84680.026*
C140.7577 (3)0.8091 (3)0.8930 (2)0.0282 (4)
H14A0.82030.81450.97240.034*
C150.7946 (3)0.9321 (3)0.8350 (2)0.0300 (4)
H15A0.88501.02850.87060.036*
C160.1413 (3)0.7112 (2)0.31385 (19)0.0211 (3)
H16A0.18100.76770.39910.032*
H16B0.03450.72500.27560.032*
H16C0.24180.74710.26550.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02044 (7)0.02041 (7)0.02481 (7)0.00758 (5)0.00089 (5)0.00842 (5)
S10.0287 (3)0.0207 (2)0.0312 (3)0.00775 (19)0.0017 (2)0.00210 (19)
N10.0151 (7)0.0161 (7)0.0176 (7)0.0066 (5)0.0021 (5)0.0033 (5)
C10.0158 (7)0.0191 (8)0.0165 (8)0.0083 (6)0.0035 (6)0.0031 (6)
C20.0179 (8)0.0227 (9)0.0192 (8)0.0082 (7)0.0029 (6)0.0058 (7)
C30.0202 (8)0.0295 (10)0.0184 (8)0.0101 (7)0.0013 (7)0.0056 (7)
C40.0178 (8)0.0262 (9)0.0197 (8)0.0065 (7)0.0009 (7)0.0006 (7)
C50.0188 (8)0.0193 (8)0.0213 (8)0.0068 (7)0.0007 (7)0.0005 (7)
C60.0161 (8)0.0187 (8)0.0184 (8)0.0068 (6)0.0023 (6)0.0019 (6)
C70.0195 (8)0.0165 (8)0.0217 (8)0.0075 (7)0.0028 (7)0.0028 (6)
C80.0183 (8)0.0177 (8)0.0181 (8)0.0077 (6)0.0017 (6)0.0033 (6)
C90.0153 (7)0.0175 (8)0.0164 (7)0.0074 (6)0.0036 (6)0.0030 (6)
C100.0178 (8)0.0154 (7)0.0188 (8)0.0064 (6)0.0023 (6)0.0021 (6)
C110.0158 (8)0.0173 (8)0.0190 (8)0.0070 (6)0.0026 (6)0.0023 (6)
C120.0168 (8)0.0163 (8)0.0198 (8)0.0069 (6)0.0026 (6)0.0015 (6)
C130.0121 (7)0.0217 (9)0.0238 (9)0.0014 (6)0.0068 (6)0.0071 (7)
C140.0231 (9)0.0395 (12)0.0201 (9)0.0132 (9)0.0010 (7)0.0002 (8)
C150.0263 (10)0.0248 (10)0.0295 (11)0.0056 (8)0.0030 (8)0.0066 (8)
C160.0219 (9)0.0163 (8)0.0245 (9)0.0075 (7)0.0003 (7)0.0051 (7)
Geometric parameters (Å, º) top
S1—C151.697 (2)C7—H7A0.9300
S1—C121.7273 (19)C8—C91.421 (2)
N1—C91.354 (2)C8—H8A0.9300
N1—C11.397 (2)C9—C101.446 (3)
N1—C161.481 (2)C10—C111.350 (3)
C1—C21.410 (3)C10—H10A0.9300
C1—C61.413 (3)C11—C121.436 (3)
C2—C31.377 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.450 (3)
C3—C41.403 (3)C13—C141.420 (3)
C3—H3A0.9300C13—H13A0.9300
C4—C51.371 (3)C14—C151.361 (4)
C4—H4A0.9300C14—H14A0.9300
C5—C61.412 (3)C15—H15A0.9300
C5—H5A0.9300C16—H16A0.9600
C6—C71.415 (3)C16—H16B0.9600
C7—C81.364 (3)C16—H16C0.9600
C15—S1—C1291.58 (11)N1—C9—C8119.08 (16)
C9—N1—C1121.89 (16)N1—C9—C10119.79 (16)
C9—N1—C16119.57 (16)C8—C9—C10121.13 (17)
C1—N1—C16118.53 (15)C11—C10—C9123.13 (17)
N1—C1—C2121.92 (17)C11—C10—H10A118.4
N1—C1—C6118.98 (16)C9—C10—H10A118.4
C2—C1—C6119.09 (17)C10—C11—C12125.11 (17)
C3—C2—C1119.54 (18)C10—C11—H11A117.4
C3—C2—H2A120.2C12—C11—H11A117.4
C1—C2—H2A120.2C11—C12—C13124.49 (17)
C2—C3—C4121.53 (19)C11—C12—S1123.74 (15)
C2—C3—H3A119.2C13—C12—S1111.77 (14)
C4—C3—H3A119.2C14—C13—C12108.83 (19)
C5—C4—C3119.69 (18)C14—C13—H13A125.6
C5—C4—H4A120.2C12—C13—H13A125.6
C3—C4—H4A120.2C15—C14—C13114.4 (2)
C4—C5—C6120.20 (18)C15—C14—H14A122.8
C4—C5—H5A119.9C13—C14—H14A122.8
C6—C5—H5A119.9C14—C15—S1113.38 (17)
C5—C6—C1119.91 (18)C14—C15—H15A123.3
C5—C6—C7121.09 (17)S1—C15—H15A123.3
C1—C6—C7118.99 (17)N1—C16—H16A109.5
C8—C7—C6120.12 (17)N1—C16—H16B109.5
C8—C7—H7A119.9H16A—C16—H16B109.5
C6—C7—H7A119.9N1—C16—H16C109.5
C7—C8—C9120.69 (18)H16A—C16—H16C109.5
C7—C8—H8A119.7H16B—C16—H16C109.5
C9—C8—H8A119.7
C9—N1—C1—C2176.75 (17)C1—N1—C9—C85.6 (3)
C16—N1—C1—C23.6 (3)C16—N1—C9—C8173.99 (16)
C9—N1—C1—C63.5 (3)C1—N1—C9—C10173.83 (16)
C16—N1—C1—C6176.05 (16)C16—N1—C9—C106.6 (2)
N1—C1—C2—C3178.41 (17)C7—C8—C9—N13.2 (3)
C6—C1—C2—C31.9 (3)C7—C8—C9—C10176.23 (17)
C1—C2—C3—C40.5 (3)N1—C9—C10—C11166.39 (17)
C2—C3—C4—C50.8 (3)C8—C9—C10—C1114.2 (3)
C3—C4—C5—C60.6 (3)C9—C10—C11—C12178.56 (17)
C4—C5—C6—C10.8 (3)C10—C11—C12—C13179.42 (18)
C4—C5—C6—C7179.96 (18)C10—C11—C12—S11.4 (3)
N1—C1—C6—C5178.25 (16)C15—S1—C12—C11178.33 (17)
C2—C1—C6—C52.0 (3)C15—S1—C12—C130.98 (15)
N1—C1—C6—C70.9 (3)C11—C12—C13—C14177.85 (18)
C2—C1—C6—C7178.77 (17)S1—C12—C13—C141.5 (2)
C5—C6—C7—C8175.96 (18)C12—C13—C14—C151.3 (3)
C1—C6—C7—C83.2 (3)C13—C14—C15—S10.6 (3)
C6—C7—C8—C91.2 (3)C12—S1—C15—C140.22 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S10.932.803.189 (2)106
C11—H11A···I1i0.933.063.934 (2)157
C16—H16B···I1ii0.963.063.962 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14NS+·I
Mr379.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8243 (1), 9.6906 (1), 10.7633 (2)
α, β, γ (°)97.521 (1), 95.338 (1), 112.758 (1)
V3)736.82 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.58 × 0.28 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.346, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
17060, 4261, 4118
Rint0.018
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.10
No. of reflections4261
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 0.90

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···S10.932.80333.189 (2)106
C11—H11A···I1i0.933.06013.934 (2)157
C16—H16B···I1ii0.963.06413.962 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and the Graduate School, Prince of Songkla University are gratefully acknowledged for providing financial support to PR. The authors thank the Prince of Songkla University for a research grant and also the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2006). Acta Cryst. E62, o4004–o4006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020–o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321–o2323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChou, S.-S. P., Sun, D.-J., Huang, J.-Y., Yang, P.-K. & Lin, H.-C. (1996). Tetrahedron, 37, 7279–7282.  CrossRef CAS Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationDrost, K. J., Jen, A. K.-J. & Rao, V. P. (1995). Chemtech, 25, 16–25.  CAS Google Scholar
First citationMorley, J. O. (1991). J. Chem. Soc. Faraday Trans. 87, 3009–3013.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1453-o1454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds