organic compounds
4-Chlorophenyl 4-methylbenzoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The 14H11ClO2, resembles those of 3-chlorophenyl 4-methylbenzoate (3CP4MBA), 4-methylphenyl 4-methylbenzoate (4MP4MBA), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) and other aryl benzoates with similar bond parameters. The dihedral angle between the benzene rings in 4CP4MBA is 63.89 (8)°, compared with 71.75 (7)° in 3CP4MBA, 63.57 (5)° in 4MP4MBA and 51.86 (4)° in 4MP4CBA. In the of the title compound, the molecules are linked into an infinite chain along the a axis via C—H—O hydrogen bonds.
of the title compound (4CP4MBA), CRelated literature
For related literature, see: Gowda et al. (2007); Gowda, Foro, et al. (2008); Gowda, Svoboda et al. (2008); Nayak & Gowda (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808021697/is2314sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808021697/is2314Isup2.hkl
The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its ethanol solution.
All H atoms were included in the riding-model approximation, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H11ClO2 | F(000) = 512 |
Mr = 246.68 | Dx = 1.360 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 6.048 (2) Å | θ = 3.4–16.9° |
b = 7.559 (2) Å | µ = 2.69 mm−1 |
c = 26.487 (5) Å | T = 299 K |
β = 95.68 (4)° | Prism, colourless |
V = 1205.0 (6) Å3 | 0.65 × 0.60 × 0.45 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1968 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.053 |
Graphite monochromator | θmax = 67.0°, θmin = 3.4° |
ω/2θ scans | h = −7→2 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→0 |
Tmin = 0.216, Tmax = 0.298 | l = −31→31 |
2872 measured reflections | 3 standard reflections every 120 min |
2141 independent reflections | intensity decay: 1.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.092 | H-atom parameters constrained |
wR(F2) = 0.313 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.51 | (Δ/σ)max = 0.001 |
2141 reflections | Δρmax = 0.53 e Å−3 |
156 parameters | Δρmin = −0.94 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.048 (9) |
C14H11ClO2 | V = 1205.0 (6) Å3 |
Mr = 246.68 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 6.048 (2) Å | µ = 2.69 mm−1 |
b = 7.559 (2) Å | T = 299 K |
c = 26.487 (5) Å | 0.65 × 0.60 × 0.45 mm |
β = 95.68 (4)° |
Enraf–Nonius CAD-4 diffractometer | 1968 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.053 |
Tmin = 0.216, Tmax = 0.298 | 3 standard reflections every 120 min |
2872 measured reflections | intensity decay: 1.5% |
2141 independent reflections |
R[F2 > 2σ(F2)] = 0.092 | 0 restraints |
wR(F2) = 0.313 | H-atom parameters constrained |
S = 1.51 | Δρmax = 0.53 e Å−3 |
2141 reflections | Δρmin = −0.94 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.75384 (13) | 0.28660 (13) | 0.53235 (3) | 0.0895 (6) | |
O1 | 0.2922 (3) | 0.3273 (3) | 0.32780 (7) | 0.0708 (7) | |
O2 | 0.0565 (3) | 0.5372 (3) | 0.34855 (6) | 0.0655 (7) | |
C1 | 0.3932 (4) | 0.3235 (3) | 0.37781 (9) | 0.0577 (7) | |
C2 | 0.5981 (4) | 0.4028 (4) | 0.38707 (10) | 0.0627 (8) | |
H2 | 0.6612 | 0.4629 | 0.3614 | 0.075* | |
C3 | 0.7081 (4) | 0.3910 (3) | 0.43527 (11) | 0.0643 (8) | |
H3 | 0.8467 | 0.4436 | 0.4425 | 0.077* | |
C4 | 0.6124 (5) | 0.3022 (3) | 0.47205 (10) | 0.0618 (8) | |
C5 | 0.4096 (5) | 0.2231 (4) | 0.46293 (11) | 0.0697 (8) | |
H5 | 0.3473 | 0.1627 | 0.4886 | 0.084* | |
C6 | 0.2981 (4) | 0.2344 (4) | 0.41478 (11) | 0.0693 (8) | |
H6 | 0.1596 | 0.1815 | 0.4078 | 0.083* | |
C7 | 0.1213 (3) | 0.4406 (3) | 0.31755 (8) | 0.0522 (7) | |
C8 | 0.0302 (3) | 0.4314 (3) | 0.26348 (8) | 0.0492 (7) | |
C9 | 0.1415 (4) | 0.3453 (3) | 0.22735 (9) | 0.0571 (7) | |
H9 | 0.2781 | 0.2919 | 0.2366 | 0.068* | |
C10 | 0.0495 (4) | 0.3389 (3) | 0.17768 (10) | 0.0591 (7) | |
H10 | 0.1266 | 0.2834 | 0.1535 | 0.071* | |
C11 | −0.1566 (4) | 0.4140 (3) | 0.16318 (9) | 0.0549 (7) | |
C12 | −0.2636 (4) | 0.5008 (3) | 0.19962 (10) | 0.0605 (7) | |
H12 | −0.4012 | 0.5527 | 0.1905 | 0.073* | |
C13 | −0.1715 (4) | 0.5122 (3) | 0.24905 (9) | 0.0579 (7) | |
H13 | −0.2446 | 0.5741 | 0.2728 | 0.069* | |
C14 | −0.2612 (5) | 0.4005 (4) | 0.10953 (11) | 0.0718 (8) | |
H14A | −0.1757 | 0.3214 | 0.0908 | 0.086* | |
H14B | −0.2651 | 0.5154 | 0.0940 | 0.086* | |
H14C | −0.4099 | 0.3559 | 0.1094 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0931 (9) | 0.1079 (9) | 0.0595 (8) | −0.0047 (4) | −0.0318 (5) | 0.0080 (3) |
O1 | 0.0735 (12) | 0.0844 (13) | 0.0496 (12) | 0.0203 (9) | −0.0187 (8) | −0.0115 (9) |
O2 | 0.0671 (12) | 0.0793 (12) | 0.0480 (11) | 0.0089 (8) | −0.0050 (7) | −0.0095 (8) |
C1 | 0.0570 (13) | 0.0664 (13) | 0.0460 (14) | 0.0066 (9) | −0.0130 (9) | −0.0050 (10) |
C2 | 0.0586 (14) | 0.0753 (15) | 0.0522 (15) | −0.0014 (10) | −0.0054 (10) | 0.0072 (12) |
C3 | 0.0543 (13) | 0.0703 (15) | 0.0644 (16) | −0.0030 (10) | −0.0135 (10) | 0.0029 (12) |
C4 | 0.0653 (15) | 0.0640 (14) | 0.0518 (15) | 0.0026 (9) | −0.0152 (10) | 0.0020 (10) |
C5 | 0.0730 (16) | 0.0801 (17) | 0.0532 (16) | −0.0130 (12) | −0.0069 (12) | 0.0089 (12) |
C6 | 0.0609 (15) | 0.0791 (16) | 0.0637 (17) | −0.0128 (11) | −0.0148 (11) | −0.0027 (13) |
C7 | 0.0480 (12) | 0.0595 (13) | 0.0471 (13) | −0.0029 (8) | −0.0061 (9) | −0.0003 (9) |
C8 | 0.0506 (11) | 0.0511 (11) | 0.0439 (13) | −0.0028 (7) | −0.0058 (8) | 0.0004 (8) |
C9 | 0.0525 (13) | 0.0604 (12) | 0.0557 (14) | 0.0063 (9) | −0.0076 (9) | −0.0049 (10) |
C10 | 0.0635 (15) | 0.0665 (14) | 0.0458 (13) | 0.0082 (10) | −0.0025 (10) | −0.0061 (10) |
C11 | 0.0635 (13) | 0.0499 (11) | 0.0481 (14) | −0.0014 (8) | −0.0103 (10) | 0.0022 (9) |
C12 | 0.0555 (13) | 0.0675 (14) | 0.0556 (14) | 0.0098 (9) | −0.0085 (10) | 0.0043 (11) |
C13 | 0.0607 (14) | 0.0665 (14) | 0.0452 (13) | 0.0081 (9) | −0.0012 (9) | −0.0032 (10) |
C14 | 0.0862 (19) | 0.0737 (16) | 0.0512 (16) | 0.0040 (12) | −0.0150 (12) | −0.0004 (12) |
Cl1—C4 | 1.740 (3) | C8—C13 | 1.384 (3) |
O1—C7 | 1.350 (3) | C8—C9 | 1.386 (3) |
O1—C1 | 1.403 (3) | C9—C10 | 1.378 (3) |
O2—C7 | 1.193 (3) | C9—H9 | 0.9300 |
C1—C6 | 1.362 (4) | C10—C11 | 1.389 (3) |
C1—C2 | 1.376 (4) | C10—H10 | 0.9300 |
C2—C3 | 1.383 (4) | C11—C12 | 1.380 (4) |
C2—H2 | 0.9300 | C11—C14 | 1.501 (3) |
C3—C4 | 1.359 (4) | C12—C13 | 1.374 (4) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.364 (4) | C13—H13 | 0.9300 |
C5—C6 | 1.385 (4) | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C6—H6 | 0.9300 | C14—H14C | 0.9600 |
C7—C8 | 1.484 (3) | ||
C7—O1—C1 | 117.12 (18) | C13—C8—C7 | 118.57 (19) |
C6—C1—C2 | 121.6 (3) | C9—C8—C7 | 122.0 (2) |
C6—C1—O1 | 120.9 (2) | C10—C9—C8 | 119.8 (2) |
C2—C1—O1 | 117.4 (2) | C10—C9—H9 | 120.1 |
C1—C2—C3 | 118.6 (2) | C8—C9—H9 | 120.1 |
C1—C2—H2 | 120.7 | C9—C10—C11 | 121.1 (2) |
C3—C2—H2 | 120.7 | C9—C10—H10 | 119.4 |
C4—C3—C2 | 119.6 (2) | C11—C10—H10 | 119.4 |
C4—C3—H3 | 120.2 | C12—C11—C10 | 118.1 (2) |
C2—C3—H3 | 120.2 | C12—C11—C14 | 120.8 (2) |
C3—C4—C5 | 121.9 (3) | C10—C11—C14 | 121.1 (2) |
C3—C4—Cl1 | 119.1 (2) | C13—C12—C11 | 121.5 (2) |
C5—C4—Cl1 | 119.0 (2) | C13—C12—H12 | 119.2 |
C4—C5—C6 | 118.9 (3) | C11—C12—H12 | 119.2 |
C4—C5—H5 | 120.5 | C12—C13—C8 | 119.9 (2) |
C6—C5—H5 | 120.5 | C12—C13—H13 | 120.0 |
C1—C6—C5 | 119.4 (2) | C8—C13—H13 | 120.0 |
C1—C6—H6 | 120.3 | C11—C14—H14A | 109.5 |
C5—C6—H6 | 120.3 | C11—C14—H14B | 109.5 |
O2—C7—O1 | 123.2 (2) | H14A—C14—H14B | 109.5 |
O2—C7—C8 | 125.2 (2) | C11—C14—H14C | 109.5 |
O1—C7—C8 | 111.57 (19) | H14A—C14—H14C | 109.5 |
C13—C8—C9 | 119.5 (2) | H14B—C14—H14C | 109.5 |
C7—O1—C1—C6 | 79.0 (3) | O2—C7—C8—C13 | −13.8 (3) |
C7—O1—C1—C2 | −105.3 (3) | O1—C7—C8—C13 | 167.3 (2) |
C6—C1—C2—C3 | −0.2 (4) | O2—C7—C8—C9 | 165.9 (2) |
O1—C1—C2—C3 | −175.8 (2) | O1—C7—C8—C9 | −12.9 (3) |
C1—C2—C3—C4 | 0.1 (4) | C13—C8—C9—C10 | −0.8 (3) |
C2—C3—C4—C5 | 0.1 (4) | C7—C8—C9—C10 | 179.5 (2) |
C2—C3—C4—Cl1 | 179.36 (19) | C8—C9—C10—C11 | −1.5 (4) |
C3—C4—C5—C6 | −0.2 (5) | C9—C10—C11—C12 | 2.2 (4) |
Cl1—C4—C5—C6 | −179.4 (2) | C9—C10—C11—C14 | −177.4 (2) |
C2—C1—C6—C5 | 0.1 (4) | C10—C11—C12—C13 | −0.5 (4) |
O1—C1—C6—C5 | 175.6 (2) | C14—C11—C12—C13 | 179.1 (2) |
C4—C5—C6—C1 | 0.1 (5) | C11—C12—C13—C8 | −1.8 (4) |
C1—O1—C7—O2 | 1.1 (3) | C9—C8—C13—C12 | 2.5 (4) |
C1—O1—C7—C8 | 179.94 (19) | C7—C8—C13—C12 | −177.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.93 | 2.51 | 3.212 (3) | 132 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H11ClO2 |
Mr | 246.68 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 299 |
a, b, c (Å) | 6.048 (2), 7.559 (2), 26.487 (5) |
β (°) | 95.68 (4) |
V (Å3) | 1205.0 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.69 |
Crystal size (mm) | 0.65 × 0.60 × 0.45 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.216, 0.298 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2872, 2141, 1968 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.092, 0.313, 1.51 |
No. of reflections | 2141 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.94 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.93 | 2.51 | 3.212 (3) | 132.4 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1390. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as part of a study of the substituent effects on the solid state structures of aryl benzoates (Gowda et al. 2007; Gowda, Foro, et al., 2008; Gowda, Svoboda et al., 2008), the structure of 4-chlorophenyl 4-methylbenzoate (4CP4MBA) has been determined. The structure of 4CP4MBA (Fig. 1) is similar to those of 3-chlorophenyl 4-methylbenzoate (3CP4MBA)(Gowda, Foro et al., 2008), 4-methylphenyl 4-methylbenzoate (4MP4MBA)(Gowda et al., 2007), 4-methylphenyl 4-chlorobenzoate (4MP4CBA) (Gowda, Svoboda et al., 2008) The bond parameters in 4CP4MBA are similar to those in 3CP4MBA, 4MP4MBA, 4MP4CBA and other aryl benzoates. The dihedral angle between the benzene and benzoyl rings in 4CP4MBA is 63.89 (8)°, compared to the values of 71.75 (7)° in 3CP4MeBA, 63.57 (5)° in 4MP4MBA and 51.86 (4)° in 4MP4CBA. The molecules in the crystal structure of 4CP4MBA are packed into chains via C—H—O hydrogen bonds (Table 1 and Fig. 2).