organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1592-o1593

(E)-3-(4-Chloro­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 July 2008; accepted 20 July 2008; online 26 July 2008)

The title compound, C13H9ClOS, adopts an E configuration with respect to the C=C double bond of the propenone unit. The thienyl and benzene rings are slightly twisted from each other, making a dihedral angle of 6.38 (3)°. An intra­molecular C—H⋯O hydrogen bond generates an S(5) ring motif. A weak inter­molecular C—H⋯O inter­action, a short intra­molecular S⋯O contact [2.932 (2) Å] and two ππ inter­actions between the thienyl and benzene rings are observed. The centroid–centroid distances of the ππ inter­actions are 3.7899 (16) and 3.7891 (16) Å.

Related literature

For related literature on chalcone derivatives, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu, Ji, Patil & Dharmaprakash (2008[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511-103516.]); Gu, Ji, Patil, Dharmaprakash & Wang (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118-091121.]); Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356-o1357.]); Patil et al. (2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClOS

  • Mr = 248.71

  • Monoclinic, P 21 /c

  • a = 5.7023 (3) Å

  • b = 13.3576 (8) Å

  • c = 14.7017 (10) Å

  • β = 96.735 (4)°

  • V = 1112.09 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.942

  • 12436 measured reflections

  • 3238 independent reflections

  • 2546 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.199

  • S = 1.08

  • 3238 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.93 2.50 2.825 (4) 101
C13—H13A⋯O1i 0.93 2.58 3.389 (4) 145
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Since some chalcone derivatives have shown to be potential nonlinear optical materials (Agrinskaya et al., 1999), a series of new chalcone derivatives have been prepared in our laboratory (Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008; Fun et al., 2008; Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil et al., 2006). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

In the crystal structure of the title compound, (I), the molecule exhibits an E configuration with respect to the C6C7 double bond with the C5–C6–C7–C8 torsion angle being 180.0 (3)°. The bond lengths and bond angles in (I) are found to have normal values (Allen et al., 1987). The thienyl (S1/C1—C4) and benzene (C8—C13) rings are essentially planar with the maximum deviation from planarity being -0.001 (2) Å for atom S1 and 0.011 (3) Å for atom C8. The thienyl ring and the benzene ring are slightly twisted from each other with a dihedral angle of 6.38 (8)°.

An intramolecular C—H···O hydrogen bond generates a ring motif S(5) (Bernstein et al., 1995). The intramolecular short S···O contact [2.932 (2) Å] stabilizes the molecular conformation. The crystal packing is consolidated by a weak intermolecular C—H···O interaction. Two ππ interactions with the centroid-to-centroid distances of 3.7899 (16) and 3.7891 (16) Å are observed (symmetry codes: 1 - x, 1/2 + y, 1/2 - z; 1 - x, -1/2 + y, 1/2 - z).

Related literature top

For related literature on chalcone derivatives, see: Agrinskaya et al. (1999); Gu, Ji, Patil & Dharmaprakash (2008); Gu, Ji, Patil, Dharmaprakash & Wang (2008); Fun et al. (2008); Patil et al. (2006); Patil, Dharmaprakash et al. (2007); Patil, Fun et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The compound (I) was synthesized by the condensation of 4-chlorobenzaldehyde (0.01 mol, 1.49 mg) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (10 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The precipitated compound was recrystallized from N, N-dimethylformamide (DMF).

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The highest peak in the difference Fourier map is located 0.82 Å from atom S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis.
(E)-3-(4-Chlorophenyl)-1-(2-thienyl)prop-2-en-1-one top
Crystal data top
C13H9ClOSF(000) = 512
Mr = 248.71Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3595 reflections
a = 5.7023 (3) Åθ = 2.8–29.8°
b = 13.3576 (8) ŵ = 0.50 mm1
c = 14.7017 (10) ÅT = 100 K
β = 96.735 (4)°Needle, colourless
V = 1112.09 (12) Å30.45 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3238 independent reflections
Radiation source: fine-focus sealed tube2546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.804, Tmax = 0.942k = 1618
12436 measured reflectionsl = 2015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0986P)2 + 1.8996P]
where P = (Fo2 + 2Fc2)/3
3238 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C13H9ClOSV = 1112.09 (12) Å3
Mr = 248.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7023 (3) ŵ = 0.50 mm1
b = 13.3576 (8) ÅT = 100 K
c = 14.7017 (10) Å0.45 × 0.13 × 0.12 mm
β = 96.735 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2546 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.942Rint = 0.030
12436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.08Δρmax = 1.76 e Å3
3238 reflectionsΔρmin = 0.49 e Å3
145 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90267 (12)1.35871 (6)0.43901 (5)0.0277 (2)
Cl10.00412 (13)0.64087 (5)0.29914 (5)0.0299 (2)
O10.9797 (4)1.14167 (16)0.44334 (16)0.0327 (5)
C20.4870 (5)1.4144 (2)0.3764 (2)0.0293 (6)
H2A0.35751.45500.35790.035*
C30.4820 (5)1.3077 (2)0.37026 (19)0.0224 (5)
H3A0.35051.27030.34760.027*
C40.7018 (5)1.2675 (2)0.40300 (18)0.0223 (5)
C50.7766 (5)1.1625 (2)0.4128 (2)0.0250 (6)
C60.5981 (5)1.0853 (2)0.3844 (2)0.0268 (6)
H6A0.45391.10420.35290.032*
C70.6405 (5)0.9890 (2)0.40334 (19)0.0240 (5)
H7A0.78680.97320.43490.029*
C80.4777 (5)0.9050 (2)0.37894 (18)0.0222 (5)
C90.2473 (5)0.9190 (2)0.3366 (2)0.0248 (6)
H9A0.19110.98370.32520.030*
C100.1021 (5)0.8388 (2)0.31147 (19)0.0238 (5)
H10A0.05010.84910.28270.029*
C10.7028 (5)1.4507 (2)0.4124 (2)0.0301 (6)
H1A0.73571.51840.42110.036*
C120.4120 (5)0.7255 (2)0.3732 (2)0.0259 (6)
H12A0.46590.66070.38560.031*
C130.5557 (5)0.8070 (2)0.39794 (19)0.0238 (5)
H13A0.70680.79650.42770.029*
C110.1866 (5)0.7422 (2)0.32979 (19)0.0224 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0200 (3)0.0344 (4)0.0281 (4)0.0065 (3)0.0004 (3)0.0013 (3)
Cl10.0258 (4)0.0293 (4)0.0341 (4)0.0077 (3)0.0020 (3)0.0027 (3)
O10.0221 (10)0.0339 (12)0.0397 (13)0.0002 (8)0.0060 (9)0.0006 (9)
C20.0217 (13)0.0321 (15)0.0342 (16)0.0004 (11)0.0034 (11)0.0023 (12)
C30.0171 (11)0.0235 (12)0.0262 (13)0.0011 (9)0.0012 (9)0.0021 (10)
C40.0174 (11)0.0281 (13)0.0207 (12)0.0040 (10)0.0001 (9)0.0028 (10)
C50.0201 (12)0.0304 (14)0.0243 (13)0.0007 (10)0.0014 (10)0.0009 (10)
C60.0191 (12)0.0287 (14)0.0312 (15)0.0021 (10)0.0029 (10)0.0005 (11)
C70.0172 (11)0.0281 (13)0.0262 (13)0.0028 (10)0.0007 (9)0.0002 (10)
C80.0173 (11)0.0266 (13)0.0224 (12)0.0009 (9)0.0016 (9)0.0015 (10)
C90.0170 (12)0.0288 (14)0.0279 (14)0.0025 (10)0.0003 (10)0.0004 (11)
C100.0170 (11)0.0307 (13)0.0233 (13)0.0012 (10)0.0004 (9)0.0023 (10)
C10.0288 (14)0.0307 (14)0.0318 (15)0.0076 (11)0.0072 (11)0.0024 (12)
C120.0224 (13)0.0252 (13)0.0300 (14)0.0007 (10)0.0031 (10)0.0038 (11)
C130.0171 (11)0.0279 (13)0.0263 (13)0.0024 (10)0.0018 (9)0.0036 (10)
C110.0196 (12)0.0256 (13)0.0227 (13)0.0048 (10)0.0050 (9)0.0003 (10)
Geometric parameters (Å, º) top
S1—C11.691 (3)C7—C81.473 (4)
S1—C41.713 (3)C7—H7A0.9300
Cl1—C111.735 (3)C8—C91.398 (4)
O1—C51.224 (3)C8—C131.400 (4)
C2—C11.369 (4)C9—C101.377 (4)
C2—C31.428 (4)C9—H9A0.9300
C2—H2A0.9300C10—C111.393 (4)
C3—C41.397 (4)C10—H10A0.9300
C3—H3A0.9300C1—H1A0.9300
C4—C51.468 (4)C12—C111.385 (4)
C5—C61.474 (4)C12—C131.386 (4)
C6—C71.333 (4)C12—H12A0.9300
C6—H6A0.9300C13—H13A0.9300
C1—S1—C492.14 (14)C9—C8—C7122.6 (3)
C1—C2—C3112.8 (3)C13—C8—C7119.1 (2)
C1—C2—H2A123.6C10—C9—C8121.3 (3)
C3—C2—H2A123.6C10—C9—H9A119.4
C4—C3—C2110.6 (2)C8—C9—H9A119.4
C4—C3—H3A124.7C9—C10—C11119.0 (2)
C2—C3—H3A124.7C9—C10—H10A120.5
C3—C4—C5129.8 (2)C11—C10—H10A120.5
C3—C4—S1111.9 (2)C2—C1—S1112.5 (2)
C5—C4—S1118.2 (2)C2—C1—H1A123.7
O1—C5—C4120.3 (3)S1—C1—H1A123.7
O1—C5—C6122.5 (3)C11—C12—C13118.9 (3)
C4—C5—C6117.2 (2)C11—C12—H12A120.6
C7—C6—C5120.9 (3)C13—C12—H12A120.6
C7—C6—H6A119.5C12—C13—C8121.2 (2)
C5—C6—H6A119.5C12—C13—H13A119.4
C6—C7—C8126.2 (3)C8—C13—H13A119.4
C6—C7—H7A116.9C12—C11—C10121.3 (2)
C8—C7—H7A116.9C12—C11—Cl1119.3 (2)
C9—C8—C13118.3 (3)C10—C11—Cl1119.3 (2)
C1—C2—C3—C40.0 (4)C6—C7—C8—C13175.3 (3)
C2—C3—C4—C5177.7 (3)C13—C8—C9—C102.0 (4)
C2—C3—C4—S10.2 (3)C7—C8—C9—C10177.5 (3)
C1—S1—C4—C30.2 (2)C8—C9—C10—C110.8 (4)
C1—S1—C4—C5177.9 (2)C3—C2—C1—S10.2 (3)
C3—C4—C5—O1180.0 (3)C4—S1—C1—C20.2 (3)
S1—C4—C5—O12.3 (4)C11—C12—C13—C80.6 (4)
C3—C4—C5—C60.2 (5)C9—C8—C13—C121.9 (4)
S1—C4—C5—C6177.9 (2)C7—C8—C13—C12177.6 (3)
O1—C5—C6—C710.0 (5)C13—C12—C11—C100.6 (4)
C4—C5—C6—C7170.1 (3)C13—C12—C11—Cl1179.6 (2)
C5—C6—C7—C8180.0 (3)C9—C10—C11—C120.5 (4)
C6—C7—C8—C94.1 (5)C9—C10—C11—Cl1179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.932.502.825 (4)101
C13—H13A···O1i0.932.583.389 (4)145
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H9ClOS
Mr248.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7023 (3), 13.3576 (8), 14.7017 (10)
β (°) 96.735 (4)
V3)1112.09 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.45 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.804, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
12436, 3238, 2546
Rint0.030
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.08
No. of reflections3238
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.932.502.825 (4)101
C13—H13A···O1i0.932.583.389 (4)145
Symmetry code: (i) x+2, y+2, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511–103516.  Web of Science CrossRef Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091121.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1592-o1593
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds