metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Ferrocenyl-2-(4-pyridyl)­propene­nitrile

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 25 June 2008; accepted 22 July 2008; online 26 July 2008)

In the title compound, [Fe(C5H5)(C13H9N2)], the pyridine ring makes a dihedral angle of 9.91 (17)° with the substituted cyclo­penta­dienyl ring and the double bond adopts a Z configuration. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the molecules into a one-dimensional chain in the a+c direction.

Related literature

For related literature, see: Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]); Shao et al. (2005[Shao, L., Hu, Y., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, m1837-m1839.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H9N2)]

  • Mr = 314.16

  • Monoclinic, P 21 /n

  • a = 11.520 (2) Å

  • b = 6.0650 (15) Å

  • c = 20.421 (5) Å

  • β = 91.194 (18)°

  • V = 1426.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 (2) K

  • 0.40 × 0.35 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.779, Tmax = 1.000 (expected range = 0.701–0.900)

  • 13960 measured reflections

  • 3229 independent reflections

  • 2543 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.05

  • 3229 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯N2i 0.98 2.57 3.476 (4) 153
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of ferrocene has received much attention not only because of its exquisite structure but also its potential applications in many fields such as non-linear optical materials, catalyst and magnetoelectric materials (Dupont et al., 2005). The molecular structure of the title compound is shown in Fig. 1. The C11C17 bond exhibits a Z configuration and the dihedral angle between the pyridine ring and the substituted cyclopentadienyl ring is 9.91 (17)°. The two cyclopentadienyl rings are nearly parallel with the dihedral angle of 3.3 (2)°. The Fe···Cg1 and Fe···Cg2 distances are 1.6611 (19) Å and 1.6563 (15) Å respectively and the Cg1···Fe···Cg2 angle is 176.18 (8), where Cg1 and Cg2 are the centroids of the unsubstituted and substituted Cp rings. Weak intermolecular C—H···N interactions are also found in the crystal structure, which link the compound into one-dimensional chain running in the a+c direction. Similar C—H···N hydrogen bonds in a ferrocene derivative were communicated by Shao et al. (2005).

Related literature top

For related literature, see: Dupont et al. (2005); Shao et al. (2005).

Experimental top

1 ml pyrrolidine was added to the mixture of formylferrocene (2.15 g, 0.01 mol) and 4-pyridineacetonitrile (1.18 g, 0.01 mol) in dichloromethane (100 ml). The mixture was stirred at room temperature for 5 h. After removing the solvent under reduced pressure, the residue was collected and dried in a vacuum desiccator. This crude product was purified by chromatography on silica gel, with petroleum ether and ethyl acetate (10:1 v/v) as eluent. Brownish red single crystals suitable for X-ray analysis were obtained by slow evaporation of ethanol at room temperature after 24 h.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing of the title compound, viewed along the b axis. Dashed lines indicate C—H···N hydrogen-bond interactions.
(Z)-3-Ferrocenyl-2-(4-pyridyl)propenenitrile top
Crystal data top
[Fe(C5H5)(C13H9N2)]F(000) = 648
Mr = 314.16Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3207 reflections
a = 11.520 (2) Åθ = 2.6–27.5°
b = 6.0650 (15) ŵ = 1.05 mm1
c = 20.421 (5) ÅT = 293 K
β = 91.194 (18)°Prism, red brown
V = 1426.5 (6) Å30.40 × 0.35 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3229 independent reflections
Radiation source: fine-focus sealed tube2543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.779, Tmax = 1.000l = 2626
13960 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4315P]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Fe(C5H5)(C13H9N2)]V = 1426.5 (6) Å3
Mr = 314.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.520 (2) ŵ = 1.05 mm1
b = 6.0650 (15) ÅT = 293 K
c = 20.421 (5) Å0.40 × 0.35 × 0.10 mm
β = 91.194 (18)°
Data collection top
Rigaku SCXmini
diffractometer
3229 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2543 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 1.000Rint = 0.051
13960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3229 reflectionsΔρmin = 0.46 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.51801 (3)0.90867 (6)0.199529 (18)0.03900 (15)
C120.4765 (2)0.8530 (5)0.29581 (12)0.0390 (6)
C110.5556 (2)0.8741 (5)0.35128 (13)0.0414 (6)
H11A0.61060.76240.35530.050*
C170.5622 (2)1.0306 (5)0.39804 (12)0.0383 (6)
C180.4829 (3)1.2149 (5)0.39637 (13)0.0468 (7)
C160.3975 (2)1.0073 (6)0.26614 (14)0.0473 (7)
H16A0.38401.15900.28070.057*
C150.3415 (3)0.9013 (6)0.21203 (16)0.0567 (8)
H15A0.28320.96840.18260.068*
C10.6478 (2)1.0312 (5)0.45305 (12)0.0397 (6)
C100.5885 (3)0.8562 (7)0.10971 (17)0.0654 (10)
H10A0.56450.74040.07880.079*
C50.6533 (3)1.2051 (5)0.49758 (14)0.0540 (8)
H5A0.60071.32110.49410.065*
C20.7280 (3)0.8635 (5)0.46294 (15)0.0526 (8)
H2A0.72740.74110.43550.063*
C130.4691 (3)0.6536 (5)0.25760 (14)0.0496 (7)
H13A0.51380.51850.26580.060*
C70.5411 (3)1.0641 (8)0.1125 (2)0.0766 (13)
H7A0.48001.12360.08350.092*
N20.8151 (3)1.0472 (6)0.55546 (14)0.0719 (9)
C90.6729 (3)0.8351 (7)0.15696 (17)0.0628 (9)
H9A0.71890.70190.16540.075*
N10.4213 (3)1.3642 (5)0.39676 (15)0.0733 (9)
C80.6822 (3)1.0285 (8)0.19148 (19)0.0735 (11)
H8A0.73711.05870.22770.088*
C40.7369 (3)1.2044 (6)0.54673 (17)0.0683 (10)
H4A0.73841.32260.57580.082*
C140.3852 (3)0.6842 (6)0.20690 (15)0.0584 (9)
H14A0.36210.57500.17370.070*
C60.5998 (4)1.1787 (6)0.1642 (3)0.0914 (16)
H6A0.58771.33220.17740.110*
C30.8088 (3)0.8783 (7)0.51349 (18)0.0696 (10)
H3A0.86210.76410.51870.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0337 (2)0.0464 (3)0.0369 (2)0.00351 (17)0.00162 (15)0.00326 (17)
C120.0347 (13)0.0474 (15)0.0352 (13)0.0041 (11)0.0052 (11)0.0042 (11)
C110.0385 (14)0.0476 (16)0.0381 (14)0.0034 (12)0.0023 (11)0.0023 (12)
C170.0381 (13)0.0438 (15)0.0331 (13)0.0010 (11)0.0043 (11)0.0007 (11)
C180.0560 (17)0.0494 (17)0.0350 (14)0.0059 (14)0.0010 (13)0.0052 (12)
C160.0337 (13)0.0643 (18)0.0439 (16)0.0046 (14)0.0025 (12)0.0034 (14)
C150.0327 (14)0.090 (3)0.0468 (17)0.0094 (16)0.0024 (13)0.0015 (16)
C10.0403 (14)0.0479 (15)0.0311 (13)0.0009 (12)0.0054 (11)0.0001 (11)
C100.067 (2)0.085 (3)0.0450 (18)0.007 (2)0.0142 (17)0.0103 (17)
C50.0583 (18)0.0573 (19)0.0461 (16)0.0090 (15)0.0074 (14)0.0147 (14)
C20.0554 (18)0.0564 (18)0.0457 (16)0.0118 (14)0.0065 (14)0.0081 (14)
C130.0584 (18)0.0493 (16)0.0412 (15)0.0135 (14)0.0041 (14)0.0039 (13)
C70.051 (2)0.108 (4)0.071 (2)0.008 (2)0.0099 (18)0.045 (2)
N20.076 (2)0.089 (2)0.0502 (16)0.0058 (18)0.0193 (15)0.0102 (16)
C90.0493 (18)0.079 (2)0.061 (2)0.0138 (17)0.0159 (16)0.0095 (18)
N10.091 (2)0.0681 (19)0.0603 (18)0.0309 (18)0.0086 (17)0.0103 (15)
C80.0479 (19)0.114 (3)0.058 (2)0.036 (2)0.0079 (17)0.008 (2)
C40.073 (2)0.074 (2)0.057 (2)0.006 (2)0.0164 (18)0.0215 (19)
C140.0529 (18)0.077 (2)0.0453 (17)0.0288 (17)0.0042 (14)0.0083 (16)
C60.113 (4)0.0426 (19)0.121 (4)0.017 (2)0.073 (3)0.004 (2)
C30.066 (2)0.082 (2)0.060 (2)0.0230 (19)0.0200 (18)0.0055 (19)
Geometric parameters (Å, º) top
Fe1—C62.030 (4)C1—C51.393 (4)
Fe1—C72.034 (3)C10—C91.361 (5)
Fe1—C132.036 (3)C10—C71.376 (5)
Fe1—C82.037 (3)C10—H10A0.9800
Fe1—C102.046 (3)C5—C41.376 (4)
Fe1—C92.050 (3)C5—H5A0.9300
Fe1—C162.053 (3)C2—C31.378 (5)
Fe1—C152.055 (3)C2—H2A0.9300
Fe1—C142.056 (3)C13—C141.414 (4)
Fe1—C122.061 (3)C13—H13A0.9800
C12—C161.431 (4)C7—C61.423 (6)
C12—C131.441 (4)C7—H7A0.9800
C12—C111.445 (4)N2—C41.321 (5)
C11—C171.347 (4)N2—C31.336 (5)
C11—H11A0.9300C9—C81.371 (6)
C17—C181.443 (4)C9—H9A0.9800
C17—C11.480 (4)C8—C61.421 (6)
C18—N11.150 (4)C8—H8A0.9800
C16—C151.422 (4)C4—H4A0.9300
C16—H16A0.9800C14—H14A0.9800
C15—C141.414 (5)C6—H6A0.9800
C15—H15A0.9800C3—H3A0.9300
C1—C21.386 (4)
C6—Fe1—C740.99 (18)C14—C15—C16108.8 (3)
C6—Fe1—C13163.0 (2)C14—C15—Fe169.91 (17)
C7—Fe1—C13154.67 (17)C16—C15—Fe169.67 (16)
C6—Fe1—C840.91 (19)C14—C15—H15A125.6
C7—Fe1—C868.01 (16)C16—C15—H15A125.6
C13—Fe1—C8125.95 (17)Fe1—C15—H15A125.6
C6—Fe1—C1067.09 (16)C2—C1—C5116.1 (3)
C7—Fe1—C1039.40 (16)C2—C1—C17122.7 (3)
C13—Fe1—C10121.59 (14)C5—C1—C17121.2 (3)
C8—Fe1—C1066.19 (15)C9—C10—C7109.6 (4)
C6—Fe1—C967.04 (16)C9—C10—Fe170.72 (19)
C7—Fe1—C966.39 (15)C7—C10—Fe169.8 (2)
C13—Fe1—C9109.61 (14)C9—C10—H10A125.2
C8—Fe1—C939.21 (16)C7—C10—H10A125.2
C10—Fe1—C938.82 (14)Fe1—C10—H10A125.2
C6—Fe1—C16109.02 (14)C4—C5—C1119.7 (3)
C7—Fe1—C16123.12 (15)C4—C5—H5A120.2
C13—Fe1—C1668.68 (14)C1—C5—H5A120.2
C8—Fe1—C16126.27 (15)C3—C2—C1119.9 (3)
C10—Fe1—C16157.78 (14)C3—C2—H2A120.0
C9—Fe1—C16161.98 (14)C1—C2—H2A120.0
C6—Fe1—C15122.00 (18)C14—C13—C12108.5 (3)
C7—Fe1—C15105.45 (14)C14—C13—Fe170.54 (18)
C13—Fe1—C1567.94 (14)C12—C13—Fe170.35 (16)
C8—Fe1—C15160.24 (18)C14—C13—H13A125.7
C10—Fe1—C15121.34 (14)C12—C13—H13A125.7
C9—Fe1—C15156.93 (15)Fe1—C13—H13A125.7
C16—Fe1—C1540.50 (12)C10—C7—C6107.2 (4)
C6—Fe1—C14155.8 (2)C10—C7—Fe170.8 (2)
C7—Fe1—C14118.82 (16)C6—C7—Fe169.3 (2)
C13—Fe1—C1440.42 (13)C10—C7—H7A126.4
C8—Fe1—C14159.43 (18)C6—C7—H7A126.4
C10—Fe1—C14105.82 (14)Fe1—C7—H7A126.4
C9—Fe1—C14122.86 (16)C4—N2—C3116.0 (3)
C16—Fe1—C1468.28 (14)C10—C9—C8109.4 (4)
C15—Fe1—C1440.23 (14)C10—C9—Fe170.5 (2)
C6—Fe1—C12126.17 (16)C8—C9—Fe169.9 (2)
C7—Fe1—C12161.19 (16)C10—C9—H9A125.3
C13—Fe1—C1241.18 (11)C8—C9—H9A125.3
C8—Fe1—C12111.72 (13)Fe1—C9—H9A125.3
C10—Fe1—C12159.07 (14)C9—C8—C6107.6 (4)
C9—Fe1—C12126.18 (13)C9—C8—Fe170.9 (2)
C16—Fe1—C1240.71 (11)C6—C8—Fe169.3 (2)
C15—Fe1—C1268.16 (12)C9—C8—H8A126.2
C14—Fe1—C1268.51 (11)C6—C8—H8A126.2
C16—C12—C13106.9 (3)Fe1—C8—H8A126.2
C16—C12—C11131.2 (3)N2—C4—C5124.4 (3)
C13—C12—C11121.9 (3)N2—C4—H4A117.8
C16—C12—Fe169.33 (16)C5—C4—H4A117.8
C13—C12—Fe168.48 (15)C13—C14—C15107.9 (3)
C11—C12—Fe1125.30 (18)C13—C14—Fe169.05 (17)
C17—C11—C12130.0 (3)C15—C14—Fe169.85 (18)
C17—C11—H11A115.0C13—C14—H14A126.1
C12—C11—H11A115.0C15—C14—H14A126.1
C11—C17—C18120.2 (3)Fe1—C14—H14A126.1
C11—C17—C1124.5 (3)C8—C6—C7106.3 (3)
C18—C17—C1115.3 (2)C8—C6—Fe169.8 (2)
N1—C18—C17177.9 (3)C7—C6—Fe169.7 (2)
C15—C16—C12107.9 (3)C8—C6—H6A126.8
C15—C16—Fe169.83 (17)C7—C6—H6A126.8
C12—C16—Fe169.96 (15)Fe1—C6—H6A126.8
C15—C16—H16A126.1N2—C3—C2123.9 (3)
C12—C16—H16A126.1N2—C3—H3A118.1
Fe1—C16—H16A126.1C2—C3—H3A118.1
C6—Fe1—C12—C1676.7 (3)C10—Fe1—C13—C12164.24 (18)
C7—Fe1—C12—C1635.5 (5)C9—Fe1—C13—C12123.00 (19)
C13—Fe1—C12—C16118.8 (3)C16—Fe1—C13—C1237.84 (16)
C8—Fe1—C12—C16120.9 (2)C15—Fe1—C13—C1281.58 (19)
C10—Fe1—C12—C16159.2 (3)C14—Fe1—C13—C12119.0 (3)
C9—Fe1—C12—C16163.0 (2)C9—C10—C7—C60.3 (4)
C15—Fe1—C12—C1637.80 (19)Fe1—C10—C7—C660.1 (2)
C14—Fe1—C12—C1681.2 (2)C9—C10—C7—Fe159.7 (2)
C6—Fe1—C12—C13164.5 (2)C6—Fe1—C7—C10117.8 (3)
C7—Fe1—C12—C13154.3 (4)C13—Fe1—C7—C1050.0 (4)
C8—Fe1—C12—C13120.3 (2)C8—Fe1—C7—C1078.8 (3)
C10—Fe1—C12—C1340.4 (4)C9—Fe1—C7—C1036.1 (2)
C9—Fe1—C12—C1378.2 (2)C16—Fe1—C7—C10161.3 (2)
C16—Fe1—C12—C13118.8 (3)C15—Fe1—C7—C10120.9 (2)
C15—Fe1—C12—C1381.0 (2)C14—Fe1—C7—C1079.7 (3)
C14—Fe1—C12—C1337.6 (2)C12—Fe1—C7—C10171.8 (3)
C6—Fe1—C12—C1149.9 (3)C13—Fe1—C7—C6167.7 (3)
C7—Fe1—C12—C1191.0 (5)C8—Fe1—C7—C638.9 (2)
C13—Fe1—C12—C11114.6 (3)C10—Fe1—C7—C6117.8 (3)
C8—Fe1—C12—C115.7 (3)C9—Fe1—C7—C681.6 (3)
C10—Fe1—C12—C1174.3 (5)C16—Fe1—C7—C680.9 (3)
C9—Fe1—C12—C1136.4 (3)C15—Fe1—C7—C6121.3 (3)
C16—Fe1—C12—C11126.6 (3)C14—Fe1—C7—C6162.6 (2)
C15—Fe1—C12—C11164.4 (3)C12—Fe1—C7—C654.0 (5)
C14—Fe1—C12—C11152.2 (3)C7—C10—C9—C80.0 (4)
C16—C12—C11—C1714.0 (5)Fe1—C10—C9—C859.2 (2)
C13—C12—C11—C17168.5 (3)C7—C10—C9—Fe159.2 (2)
Fe1—C12—C11—C17106.6 (3)C6—Fe1—C9—C1081.5 (3)
C12—C11—C17—C181.2 (5)C7—Fe1—C9—C1036.7 (3)
C12—C11—C17—C1179.4 (3)C13—Fe1—C9—C10116.4 (2)
C13—C12—C16—C151.4 (3)C8—Fe1—C9—C10120.3 (4)
C11—C12—C16—C15179.2 (3)C16—Fe1—C9—C10162.4 (4)
Fe1—C12—C16—C1559.8 (2)C15—Fe1—C9—C1036.8 (5)
C13—C12—C16—Fe158.40 (19)C14—Fe1—C9—C1073.4 (3)
C11—C12—C16—Fe1119.4 (3)C12—Fe1—C9—C10159.5 (2)
C6—Fe1—C16—C15117.3 (3)C6—Fe1—C9—C838.8 (3)
C7—Fe1—C16—C1574.1 (3)C7—Fe1—C9—C883.6 (3)
C13—Fe1—C16—C1580.6 (2)C13—Fe1—C9—C8123.3 (2)
C8—Fe1—C16—C15159.7 (2)C10—Fe1—C9—C8120.3 (4)
C10—Fe1—C16—C1541.5 (5)C16—Fe1—C9—C842.1 (6)
C9—Fe1—C16—C15168.5 (4)C15—Fe1—C9—C8157.1 (4)
C14—Fe1—C16—C1537.0 (2)C14—Fe1—C9—C8166.2 (2)
C12—Fe1—C16—C15118.8 (3)C12—Fe1—C9—C880.1 (3)
C6—Fe1—C16—C12123.8 (2)C10—C9—C8—C60.3 (4)
C7—Fe1—C16—C12167.1 (2)Fe1—C9—C8—C659.9 (2)
C13—Fe1—C16—C1238.27 (17)C10—C9—C8—Fe159.6 (3)
C8—Fe1—C16—C1281.4 (3)C6—Fe1—C8—C9118.2 (3)
C10—Fe1—C16—C12160.4 (4)C7—Fe1—C8—C979.1 (3)
C9—Fe1—C16—C1249.7 (5)C13—Fe1—C8—C976.5 (3)
C15—Fe1—C16—C12118.8 (3)C10—Fe1—C8—C936.3 (2)
C14—Fe1—C16—C1281.86 (19)C16—Fe1—C8—C9165.1 (2)
C12—C16—C15—C140.7 (3)C15—Fe1—C8—C9153.2 (4)
Fe1—C16—C15—C1459.1 (2)C14—Fe1—C8—C934.6 (5)
C12—C16—C15—Fe159.86 (19)C12—Fe1—C8—C9121.1 (2)
C6—Fe1—C15—C14157.9 (2)C7—Fe1—C8—C639.0 (3)
C7—Fe1—C15—C14116.6 (2)C13—Fe1—C8—C6165.3 (2)
C13—Fe1—C15—C1437.55 (18)C10—Fe1—C8—C681.9 (3)
C8—Fe1—C15—C14175.7 (4)C9—Fe1—C8—C6118.2 (3)
C10—Fe1—C15—C1477.0 (2)C16—Fe1—C8—C676.7 (3)
C9—Fe1—C15—C1450.9 (4)C15—Fe1—C8—C635.1 (5)
C16—Fe1—C15—C14120.1 (3)C14—Fe1—C8—C6152.8 (4)
C12—Fe1—C15—C1482.1 (2)C12—Fe1—C8—C6120.7 (3)
C6—Fe1—C15—C1682.0 (3)C3—N2—C4—C51.1 (6)
C7—Fe1—C15—C16123.3 (2)C1—C5—C4—N20.0 (6)
C13—Fe1—C15—C1682.6 (2)C12—C13—C14—C151.1 (3)
C8—Fe1—C15—C1655.6 (5)Fe1—C13—C14—C1559.3 (2)
C10—Fe1—C15—C16162.9 (2)C12—C13—C14—Fe160.35 (19)
C9—Fe1—C15—C16171.0 (3)C16—C15—C14—C130.2 (3)
C14—Fe1—C15—C16120.1 (3)Fe1—C15—C14—C1358.8 (2)
C12—Fe1—C15—C1637.99 (19)C16—C15—C14—Fe159.0 (2)
C11—C17—C1—C22.4 (4)C6—Fe1—C14—C13170.4 (3)
C18—C17—C1—C2178.2 (3)C7—Fe1—C14—C13160.9 (2)
C11—C17—C1—C5176.5 (3)C8—Fe1—C14—C1356.5 (4)
C18—C17—C1—C53.0 (4)C10—Fe1—C14—C13120.5 (2)
C6—Fe1—C10—C981.4 (3)C9—Fe1—C14—C1381.8 (2)
C7—Fe1—C10—C9120.4 (4)C16—Fe1—C14—C1382.2 (2)
C13—Fe1—C10—C982.2 (3)C15—Fe1—C14—C13119.4 (3)
C8—Fe1—C10—C936.6 (3)C12—Fe1—C14—C1338.25 (18)
C16—Fe1—C10—C9165.7 (3)C6—Fe1—C14—C1551.0 (4)
C15—Fe1—C10—C9164.0 (2)C7—Fe1—C14—C1579.7 (2)
C14—Fe1—C10—C9123.2 (2)C13—Fe1—C14—C15119.4 (3)
C12—Fe1—C10—C952.2 (5)C8—Fe1—C14—C15175.9 (4)
C6—Fe1—C10—C739.1 (3)C10—Fe1—C14—C15120.1 (2)
C13—Fe1—C10—C7157.4 (2)C9—Fe1—C14—C15158.78 (19)
C8—Fe1—C10—C783.8 (3)C16—Fe1—C14—C1537.22 (19)
C9—Fe1—C10—C7120.4 (4)C12—Fe1—C14—C1581.2 (2)
C16—Fe1—C10—C745.3 (5)C9—C8—C6—C70.5 (4)
C15—Fe1—C10—C775.5 (3)Fe1—C8—C6—C760.4 (2)
C14—Fe1—C10—C7116.4 (3)C9—C8—C6—Fe160.9 (2)
C12—Fe1—C10—C7172.6 (3)C10—C7—C6—C80.5 (4)
C2—C1—C5—C41.4 (5)Fe1—C7—C6—C860.5 (3)
C17—C1—C5—C4177.6 (3)C10—C7—C6—Fe161.0 (2)
C5—C1—C2—C31.7 (5)C7—Fe1—C6—C8117.1 (3)
C17—C1—C2—C3177.2 (3)C13—Fe1—C6—C844.7 (6)
C16—C12—C13—C141.5 (3)C10—Fe1—C6—C879.6 (3)
C11—C12—C13—C14179.6 (2)C9—Fe1—C6—C837.2 (2)
Fe1—C12—C13—C1460.5 (2)C16—Fe1—C6—C8123.9 (2)
C16—C12—C13—Fe158.94 (19)C15—Fe1—C6—C8166.8 (2)
C11—C12—C13—Fe1119.1 (2)C14—Fe1—C6—C8156.9 (3)
C6—Fe1—C13—C14166.5 (5)C12—Fe1—C6—C881.7 (3)
C7—Fe1—C13—C1442.0 (4)C13—Fe1—C6—C7161.9 (4)
C8—Fe1—C13—C14158.8 (2)C8—Fe1—C6—C7117.1 (3)
C10—Fe1—C13—C1476.8 (2)C10—Fe1—C6—C737.6 (2)
C9—Fe1—C13—C14118.0 (2)C9—Fe1—C6—C779.9 (2)
C16—Fe1—C13—C1481.1 (2)C16—Fe1—C6—C7119.0 (2)
C15—Fe1—C13—C1437.38 (19)C15—Fe1—C6—C776.1 (3)
C12—Fe1—C13—C14119.0 (3)C14—Fe1—C6—C739.8 (5)
C6—Fe1—C13—C1247.5 (6)C12—Fe1—C6—C7161.1 (2)
C7—Fe1—C13—C12161.0 (3)C4—N2—C3—C20.8 (6)
C8—Fe1—C13—C1282.3 (2)C1—C2—C3—N20.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N2i0.982.573.476 (4)153
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H9N2)]
Mr314.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.520 (2), 6.0650 (15), 20.421 (5)
β (°) 91.194 (18)
V3)1426.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.40 × 0.35 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.779, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13960, 3229, 2543
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.05
No. of reflections3229
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···N2i0.982.573.476 (4)153.1
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the Rigaku SCXmini CCD X-ray diffractometer.

References

First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShao, L., Hu, Y., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, m1837–m1839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds