organic compounds
8-Methyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5]decan-3-one
aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, İIstanbul University, Beyazıt 34116, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C15H26N2O2S, the cyclohexane and morpholine rings adopt chair conformations, while the thiazole ring has a twist conformation. An intramolecular C—H⋯S hydrogen-bond interaction forms a five-membered ring. The crystal packing involves C—H⋯O=C intermolecular interactions where carbonyl O atoms act as double acceptors to two symmetrically related H atoms.
Related literature
For general background, see: Andres et al. (2000); Vicini et al. (2006); Küçükgüzel et al. (2002); Barreca et al. (2001); Rao et al. (2004); Gududuru et al. (2004). For related literature, see: Akkurt et al. (2007, 2008). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808022459/kp2183sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022459/kp2183Isup2.hkl
A mixture of morpholinoethylamin (5 mmol), 4-methyl cyclohexanone (5 mmol) and thioglycolicacid (20 mmol) in dry benzene (20 ml) was refluxed for 6 h using a Dean-Stark water separator. Excess solvent was evaporated in vacuo. The residue was taken up in chloroform. The chloroform layer was triturated with saturated NaHCO3 solution (2x) before drying over sodium sulfate and concentrated under reduced pressure to dryness. The crude product was purified by ν, cm-1): 1672 (C=O). 1H-NMR (δ, DMSO-d6, 400 MHz): 0.85 (3H, d, J=6.0 Hz, 8-CH3),1.09–1.25 (3H, m, cycl. CH), 1.60–1.70 (4H, m, cycl. CH), 1.90–2.05 (2H, m,cycl.CH), 2.30–2.45 (6H, m, morph. N—CH2), 3.27 (2H, t, J=7.6 Hz, N—CH2), 3.45 (2H, s, SCH2), 3.53 (4H, t, J=4.4 Hz, OCH2). LC—MS (m/z): 299 (M+1). Analysis calculated for C15H26N2O2S: C 60.37, H 8.78, N 9.39%. Found: C 59.91, H 8.24, N 9.32%.
on silica gel using hexane: acetone (80:20) as to yield colourless prisms. IR (All H-atoms were placed in calculated positions [C—H = 0.96–0.97 Å] and were included in the
in the riding model approximation, with Uiso(H) set to 1.2 or 1.5 Ueq(C).The highest residual electron density [0.71 e.A-3] was located at 0.86 Å from atom H1A and the deepest residual electron-density [-0.18 e.A-3] was located at 0.72 Å from atom S1. Probably due to the poor crystal quality, most of the reflections were weak. Analysis of the solvent void using PLATON (Spek, 2003) gave that
contains no residual solvent accessible area.Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C15H26N2O2S | Z = 2 |
Mr = 298.45 | F(000) = 324 |
Triclinic, P1 | Dx = 1.228 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8629 (4) Å | Cell parameters from 29201 reflections |
b = 10.5239 (6) Å | θ = 2.0–28.0° |
c = 10.8252 (6) Å | µ = 0.20 mm−1 |
α = 94.974 (5)° | T = 296 K |
β = 106.378 (5)° | Block, colourless |
γ = 107.169 (4)° | 0.72 × 0.64 × 0.58 mm |
V = 806.89 (8) Å3 |
Stoe IPDS-2 diffractometer | 3253 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2948 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.034 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 2.9° |
ω scans | h = −9→9 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
Tmin = 0.867, Tmax = 0.891 | l = −13→13 |
17959 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.07P)2 + 0.1465P] where P = (Fo2 + 2Fc2)/3 |
3253 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C15H26N2O2S | γ = 107.169 (4)° |
Mr = 298.45 | V = 806.89 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8629 (4) Å | Mo Kα radiation |
b = 10.5239 (6) Å | µ = 0.20 mm−1 |
c = 10.8252 (6) Å | T = 296 K |
α = 94.974 (5)° | 0.72 × 0.64 × 0.58 mm |
β = 106.378 (5)° |
Stoe IPDS-2 diffractometer | 3253 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2948 reflections with I > 2σ(I) |
Tmin = 0.867, Tmax = 0.891 | Rint = 0.034 |
17959 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.72 e Å−3 |
3253 reflections | Δρmin = −0.18 e Å−3 |
181 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.34108 (6) | 0.16629 (5) | 0.79000 (5) | 0.0644 (2) | |
O1 | 0.4404 (2) | 0.54993 (14) | 0.84353 (15) | 0.0737 (5) | |
O2 | 1.1634 (2) | 0.77257 (19) | 0.54682 (15) | 0.0857 (6) | |
N1 | 0.58740 (18) | 0.40139 (13) | 0.80741 (13) | 0.0476 (4) | |
N2 | 0.88645 (18) | 0.65537 (12) | 0.66493 (12) | 0.0465 (4) | |
C1 | 0.2920 (3) | 0.3148 (2) | 0.8397 (2) | 0.0649 (6) | |
C2 | 0.4460 (2) | 0.43541 (18) | 0.83066 (16) | 0.0545 (5) | |
C3 | 0.5878 (2) | 0.26243 (15) | 0.81122 (14) | 0.0444 (4) | |
C4 | 0.6416 (3) | 0.20501 (17) | 0.69912 (16) | 0.0541 (5) | |
C5 | 0.6455 (3) | 0.06167 (18) | 0.70696 (18) | 0.0623 (6) | |
C6 | 0.7743 (3) | 0.05266 (18) | 0.83773 (19) | 0.0592 (6) | |
C7 | 0.7230 (3) | 0.11180 (19) | 0.94940 (18) | 0.0587 (6) | |
C8 | 0.7174 (2) | 0.25365 (17) | 0.94280 (15) | 0.0522 (5) | |
C9 | 0.7691 (4) | −0.0928 (2) | 0.8470 (3) | 0.0830 (8) | |
C10 | 0.7529 (2) | 0.50806 (16) | 0.80326 (15) | 0.0506 (5) | |
C11 | 0.7251 (2) | 0.54594 (17) | 0.66860 (16) | 0.0530 (5) | |
C12 | 0.8409 (3) | 0.7076 (2) | 0.54383 (18) | 0.0651 (6) | |
C13 | 1.0103 (3) | 0.8188 (2) | 0.5390 (2) | 0.0794 (7) | |
C14 | 1.2124 (3) | 0.7255 (3) | 0.6657 (2) | 0.0766 (7) | |
C15 | 1.0497 (2) | 0.61291 (18) | 0.67652 (17) | 0.0557 (5) | |
H1A | 0.17090 | 0.31270 | 0.78280 | 0.0780* | |
H1B | 0.28890 | 0.31960 | 0.92890 | 0.0780* | |
H4A | 0.76460 | 0.26320 | 0.70210 | 0.0650* | |
H4B | 0.55170 | 0.20400 | 0.61620 | 0.0650* | |
H5A | 0.51890 | 0.00160 | 0.69320 | 0.0750* | |
H5B | 0.68720 | 0.03110 | 0.63730 | 0.0750* | |
H6 | 0.90330 | 0.10710 | 0.84630 | 0.0710* | |
H7A | 0.60070 | 0.05350 | 0.94770 | 0.0700* | |
H7B | 0.81400 | 0.11330 | 1.03190 | 0.0700* | |
H8A | 0.84370 | 0.31460 | 0.95710 | 0.0630* | |
H8B | 0.67450 | 0.28300 | 1.01240 | 0.0630* | |
H9A | 0.80140 | −0.12910 | 0.77570 | 0.1240* | |
H9B | 0.64500 | −0.14730 | 0.84260 | 0.1240* | |
H9C | 0.85780 | −0.09330 | 0.92860 | 0.1240* | |
H10A | 0.86080 | 0.47760 | 0.82650 | 0.0610* | |
H10B | 0.77880 | 0.58750 | 0.86740 | 0.0610* | |
H11A | 0.70360 | 0.46730 | 0.60500 | 0.0640* | |
H11B | 0.61440 | 0.57310 | 0.64400 | 0.0640* | |
H12A | 0.73840 | 0.74250 | 0.53870 | 0.0780* | |
H12B | 0.80040 | 0.63490 | 0.46930 | 0.0780* | |
H13A | 0.97770 | 0.85230 | 0.45800 | 0.0950* | |
H13B | 1.04670 | 0.89310 | 0.61120 | 0.0950* | |
H14A | 1.25230 | 0.79980 | 0.73860 | 0.0920* | |
H14B | 1.31720 | 0.69320 | 0.67090 | 0.0920* | |
H15A | 1.01660 | 0.53560 | 0.60800 | 0.0670* | |
H15B | 1.08690 | 0.58510 | 0.76030 | 0.0670* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0449 (2) | 0.0547 (3) | 0.0893 (4) | 0.0085 (2) | 0.0219 (2) | 0.0200 (2) |
O1 | 0.0760 (9) | 0.0646 (8) | 0.0894 (10) | 0.0368 (7) | 0.0264 (7) | 0.0132 (7) |
O2 | 0.0795 (10) | 0.1059 (12) | 0.0718 (9) | 0.0147 (9) | 0.0356 (7) | 0.0365 (8) |
N1 | 0.0443 (6) | 0.0453 (7) | 0.0529 (7) | 0.0129 (5) | 0.0164 (5) | 0.0124 (5) |
N2 | 0.0477 (7) | 0.0418 (6) | 0.0465 (6) | 0.0119 (5) | 0.0119 (5) | 0.0127 (5) |
C1 | 0.0485 (9) | 0.0746 (12) | 0.0754 (11) | 0.0193 (8) | 0.0279 (8) | 0.0109 (9) |
C2 | 0.0518 (9) | 0.0593 (9) | 0.0547 (9) | 0.0230 (7) | 0.0163 (7) | 0.0099 (7) |
C3 | 0.0415 (7) | 0.0446 (7) | 0.0468 (7) | 0.0117 (6) | 0.0157 (6) | 0.0125 (6) |
C4 | 0.0645 (10) | 0.0536 (9) | 0.0460 (8) | 0.0185 (7) | 0.0209 (7) | 0.0120 (6) |
C5 | 0.0723 (11) | 0.0540 (9) | 0.0631 (10) | 0.0207 (8) | 0.0271 (8) | 0.0071 (8) |
C6 | 0.0532 (9) | 0.0524 (9) | 0.0770 (11) | 0.0196 (7) | 0.0253 (8) | 0.0165 (8) |
C7 | 0.0599 (10) | 0.0663 (10) | 0.0602 (9) | 0.0279 (8) | 0.0232 (8) | 0.0271 (8) |
C8 | 0.0536 (8) | 0.0607 (9) | 0.0441 (8) | 0.0218 (7) | 0.0148 (6) | 0.0120 (6) |
C9 | 0.0817 (14) | 0.0599 (11) | 0.1133 (18) | 0.0334 (10) | 0.0288 (13) | 0.0205 (11) |
C10 | 0.0473 (8) | 0.0470 (8) | 0.0501 (8) | 0.0080 (6) | 0.0123 (6) | 0.0111 (6) |
C11 | 0.0459 (8) | 0.0524 (8) | 0.0527 (8) | 0.0094 (7) | 0.0093 (6) | 0.0161 (7) |
C12 | 0.0649 (10) | 0.0618 (10) | 0.0595 (10) | 0.0137 (8) | 0.0098 (8) | 0.0269 (8) |
C13 | 0.0898 (15) | 0.0634 (11) | 0.0663 (11) | 0.0041 (10) | 0.0140 (10) | 0.0316 (9) |
C14 | 0.0559 (10) | 0.0968 (15) | 0.0778 (13) | 0.0158 (10) | 0.0280 (9) | 0.0329 (11) |
C15 | 0.0560 (9) | 0.0602 (9) | 0.0552 (9) | 0.0210 (7) | 0.0214 (7) | 0.0161 (7) |
S1—C1 | 1.791 (2) | C4—H4A | 0.9700 |
S1—C3 | 1.8410 (17) | C4—H4B | 0.9700 |
O1—C2 | 1.216 (2) | C5—H5A | 0.9700 |
O2—C13 | 1.410 (3) | C5—H5B | 0.9700 |
O2—C14 | 1.412 (3) | C6—H6 | 0.9800 |
N1—C2 | 1.343 (2) | C7—H7A | 0.9700 |
N1—C3 | 1.468 (2) | C7—H7B | 0.9700 |
N1—C10 | 1.461 (2) | C8—H8A | 0.9700 |
N2—C11 | 1.453 (2) | C8—H8B | 0.9700 |
N2—C12 | 1.458 (2) | C9—H9A | 0.9600 |
N2—C15 | 1.456 (2) | C9—H9B | 0.9600 |
C1—C2 | 1.506 (3) | C9—H9C | 0.9600 |
C3—C4 | 1.526 (3) | C10—H10A | 0.9700 |
C3—C8 | 1.528 (2) | C10—H10B | 0.9700 |
C4—C5 | 1.527 (3) | C11—H11A | 0.9700 |
C5—C6 | 1.520 (3) | C11—H11B | 0.9700 |
C6—C7 | 1.518 (3) | C12—H12A | 0.9700 |
C6—C9 | 1.532 (3) | C12—H12B | 0.9700 |
C7—C8 | 1.514 (3) | C13—H13A | 0.9700 |
C10—C11 | 1.518 (2) | C13—H13B | 0.9700 |
C12—C13 | 1.509 (3) | C14—H14A | 0.9700 |
C14—C15 | 1.506 (3) | C14—H14B | 0.9700 |
C1—H1A | 0.9700 | C15—H15A | 0.9700 |
C1—H1B | 0.9700 | C15—H15B | 0.9700 |
S1···N1 | 2.6062 (15) | H5B···H9A | 2.5400 |
S1···H5A | 2.8300 | H7A···S1 | 2.8800 |
S1···H7A | 2.8800 | H7A···H9B | 2.4700 |
S1···H13Bi | 3.1500 | H7A···H7Aviii | 2.2900 |
S1···H13Aii | 3.0600 | H7B···H9C | 2.5200 |
O1···C11 | 3.321 (2) | H7B···H9Cix | 2.5700 |
O1···C14iii | 3.311 (3) | H8A···C10 | 2.8600 |
O1···C15iii | 3.380 (2) | H8A···H10A | 2.3100 |
O1···C1iv | 3.395 (3) | H8B···O1iv | 2.7600 |
O1···C2iv | 3.363 (2) | H9A···N2x | 2.8100 |
O2···N2 | 2.856 (2) | H9A···C12x | 3.0600 |
O2···C4v | 3.419 (3) | H9A···H5B | 2.5400 |
O1···H10B | 2.5100 | H9B···H5A | 2.5500 |
O1···H15Biii | 2.8200 | H9B···H7A | 2.4700 |
O1···H1Biv | 2.6900 | H9C···H7B | 2.5200 |
O1···H8Biv | 2.7600 | H9C···H7Bix | 2.5700 |
O1···H11B | 2.8600 | H9C···H9Cix | 2.4900 |
O1···H14Biii | 2.6500 | H10A···C4 | 2.8600 |
N1···S1 | 2.6062 (15) | H10A···C8 | 2.8600 |
N2···O2 | 2.856 (2) | H10A···C15 | 2.7200 |
N2···H9Avi | 2.8100 | H10A···H4A | 2.3200 |
C1···O1iv | 3.395 (3) | H10A···H8A | 2.3100 |
C2···O1iv | 3.363 (2) | H10A···H15B | 2.1500 |
C2···C2iv | 3.565 (2) | H10B···O1 | 2.5100 |
C4···C11 | 3.514 (2) | H10B···H1Biv | 2.5900 |
C4···O2v | 3.419 (3) | H11A···C4 | 2.9800 |
C11···O1 | 3.321 (2) | H11A···H4A | 2.5800 |
C11···C4 | 3.514 (2) | H11A···H12B | 2.4800 |
C14···O1vii | 3.311 (3) | H11A···H15A | 2.3400 |
C15···O1vii | 3.380 (2) | H11B···O1 | 2.8600 |
C2···H11B | 2.9700 | H11B···C2 | 2.9700 |
C4···H11A | 2.9800 | H11B···H12A | 2.3200 |
C4···H10A | 2.8600 | H12A···H11B | 2.3200 |
C8···H10A | 2.8600 | H12B···H11A | 2.4800 |
C10···H15B | 2.7000 | H12B···H15A | 2.4700 |
C10···H8A | 2.8600 | H13A···S1ii | 3.0600 |
C10···H4A | 2.7500 | H13B···S1xi | 3.1500 |
C12···H9Avi | 3.0600 | H13B···C15 | 3.1000 |
C15···H10A | 2.7200 | H13B···H14A | 2.3200 |
C15···H13B | 3.1000 | H14A···H13B | 2.3200 |
H1B···O1iv | 2.6900 | H14B···O1vii | 2.6500 |
H1B···H10Biv | 2.5900 | H15A···H11A | 2.3400 |
H4A···C10 | 2.7500 | H15A···H12B | 2.4700 |
H4A···H10A | 2.3200 | H15A···H15Av | 2.3100 |
H4A···H11A | 2.5800 | H15B···O1vii | 2.8200 |
H5A···S1 | 2.8300 | H15B···C10 | 2.7000 |
H5A···H9B | 2.5500 | H15B···H10A | 2.1500 |
C1—S1—C3 | 92.98 (9) | C9—C6—H6 | 108.00 |
C13—O2—C14 | 109.27 (17) | C6—C7—H7A | 109.00 |
C2—N1—C3 | 118.93 (14) | C6—C7—H7B | 109.00 |
C2—N1—C10 | 119.11 (14) | C8—C7—H7A | 109.00 |
C3—N1—C10 | 120.98 (14) | C8—C7—H7B | 109.00 |
C11—N2—C12 | 110.57 (14) | H7A—C7—H7B | 108.00 |
C11—N2—C15 | 112.08 (13) | C3—C8—H8A | 109.00 |
C12—N2—C15 | 109.11 (15) | C3—C8—H8B | 109.00 |
S1—C1—C2 | 107.46 (16) | C7—C8—H8A | 109.00 |
O1—C2—N1 | 124.77 (17) | C7—C8—H8B | 109.00 |
O1—C2—C1 | 122.89 (18) | H8A—C8—H8B | 108.00 |
N1—C2—C1 | 112.34 (16) | C6—C9—H9A | 110.00 |
S1—C3—N1 | 103.37 (11) | C6—C9—H9B | 109.00 |
S1—C3—C4 | 108.79 (12) | C6—C9—H9C | 109.00 |
S1—C3—C8 | 110.62 (11) | H9A—C9—H9B | 109.00 |
N1—C3—C4 | 112.65 (13) | H9A—C9—H9C | 109.00 |
N1—C3—C8 | 111.03 (12) | H9B—C9—H9C | 109.00 |
C4—C3—C8 | 110.18 (14) | N1—C10—H10A | 109.00 |
C3—C4—C5 | 111.69 (15) | N1—C10—H10B | 109.00 |
C4—C5—C6 | 112.69 (15) | C11—C10—H10A | 109.00 |
C5—C6—C7 | 110.18 (19) | C11—C10—H10B | 109.00 |
C5—C6—C9 | 112.17 (18) | H10A—C10—H10B | 108.00 |
C7—C6—C9 | 110.37 (18) | N2—C11—H11A | 109.00 |
C6—C7—C8 | 113.08 (15) | N2—C11—H11B | 109.00 |
C3—C8—C7 | 112.40 (14) | C10—C11—H11A | 109.00 |
N1—C10—C11 | 111.79 (13) | C10—C11—H11B | 109.00 |
N2—C11—C10 | 112.12 (13) | H11A—C11—H11B | 108.00 |
N2—C12—C13 | 110.35 (17) | N2—C12—H12A | 110.00 |
O2—C13—C12 | 111.52 (18) | N2—C12—H12B | 110.00 |
O2—C14—C15 | 111.56 (18) | C13—C12—H12A | 110.00 |
N2—C15—C14 | 111.32 (17) | C13—C12—H12B | 110.00 |
S1—C1—H1A | 110.00 | H12A—C12—H12B | 108.00 |
S1—C1—H1B | 110.00 | O2—C13—H13A | 109.00 |
C2—C1—H1A | 110.00 | O2—C13—H13B | 109.00 |
C2—C1—H1B | 110.00 | C12—C13—H13A | 109.00 |
H1A—C1—H1B | 109.00 | C12—C13—H13B | 109.00 |
C3—C4—H4A | 109.00 | H13A—C13—H13B | 108.00 |
C3—C4—H4B | 109.00 | O2—C14—H14A | 109.00 |
C5—C4—H4A | 109.00 | O2—C14—H14B | 109.00 |
C5—C4—H4B | 109.00 | C15—C14—H14A | 109.00 |
H4A—C4—H4B | 108.00 | C15—C14—H14B | 109.00 |
C4—C5—H5A | 109.00 | H14A—C14—H14B | 108.00 |
C4—C5—H5B | 109.00 | N2—C15—H15A | 109.00 |
C6—C5—H5A | 109.00 | N2—C15—H15B | 109.00 |
C6—C5—H5B | 109.00 | C14—C15—H15A | 109.00 |
H5A—C5—H5B | 108.00 | C14—C15—H15B | 109.00 |
C5—C6—H6 | 108.00 | H15A—C15—H15B | 108.00 |
C7—C6—H6 | 108.00 | ||
C3—S1—C1—C2 | 17.14 (14) | C12—N2—C15—C14 | 54.33 (18) |
C1—S1—C3—C4 | −140.08 (12) | C12—N2—C11—C10 | −168.37 (15) |
C1—S1—C3—C8 | 98.77 (13) | C15—N2—C12—C13 | −54.9 (2) |
C1—S1—C3—N1 | −20.15 (11) | S1—C1—C2—O1 | 171.24 (15) |
C13—O2—C14—C15 | 58.7 (2) | S1—C1—C2—N1 | −8.90 (19) |
C14—O2—C13—C12 | −59.8 (2) | N1—C3—C8—C7 | −179.28 (15) |
C3—N1—C2—O1 | 172.02 (16) | C8—C3—C4—C5 | 54.1 (2) |
C10—N1—C2—O1 | 3.3 (2) | S1—C3—C8—C7 | 66.56 (17) |
C10—N1—C3—C8 | 69.70 (18) | N1—C3—C4—C5 | 178.67 (16) |
C2—N1—C3—C4 | 137.07 (16) | C4—C3—C8—C7 | −53.77 (19) |
C2—N1—C3—S1 | 19.82 (16) | S1—C3—C4—C5 | −67.33 (18) |
C10—N1—C3—S1 | −171.66 (11) | C3—C4—C5—C6 | −55.4 (2) |
C10—N1—C2—C1 | −176.58 (14) | C4—C5—C6—C7 | 53.7 (2) |
C10—N1—C3—C4 | −54.41 (19) | C4—C5—C6—C9 | 177.0 (2) |
C2—N1—C3—C8 | −98.82 (17) | C5—C6—C7—C8 | −53.1 (2) |
C3—N1—C2—C1 | −7.8 (2) | C9—C6—C7—C8 | −177.6 (2) |
C3—N1—C10—C11 | 106.22 (16) | C6—C7—C8—C3 | 54.4 (2) |
C2—N1—C10—C11 | −85.28 (18) | N1—C10—C11—N2 | 177.91 (13) |
C11—N2—C15—C14 | 177.14 (14) | N2—C12—C13—O2 | 59.0 (2) |
C11—N2—C12—C13 | −178.59 (16) | O2—C14—C15—N2 | −57.2 (2) |
C15—N2—C11—C10 | 69.65 (17) |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+2; (v) −x+2, −y+1, −z+1; (vi) x, y+1, z; (vii) x+1, y, z; (viii) −x+1, −y, −z+2; (ix) −x+2, −y, −z+2; (x) x, y−1, z; (xi) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···S1 | 0.97 | 2.83 | 3.217 (2) | 105 |
C14—H14B···O1vii | 0.97 | 2.65 | 3.311 (3) | 126 |
Symmetry code: (vii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H26N2O2S |
Mr | 298.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.8629 (4), 10.5239 (6), 10.8252 (6) |
α, β, γ (°) | 94.974 (5), 106.378 (5), 107.169 (4) |
V (Å3) | 806.89 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.72 × 0.64 × 0.58 |
Data collection | |
Diffractometer | Stoe IPDS2 diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.867, 0.891 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17959, 3253, 2948 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.127, 1.07 |
No. of reflections | 3253 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.18 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···S1 | 0.97 | 2.83 | 3.217 (2) | 105 |
C14—H14B···O1i | 0.97 | 2.65 | 3.311 (3) | 126 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant No. F.279 of the University Research Fund). This work was supported by the Research Fund of İstanbul University (project Nos. 177/15012004 and UDP-730/05052006).
References
Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008). Acta Cryst. E64, o810–o811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Andres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H.-T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2000). Bioorg. Med. Chem. Lett. 10, 715–717. Web of Science CrossRef PubMed CAS Google Scholar
Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A. M., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793–1796. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. Web of Science CrossRef PubMed CAS Google Scholar
Küçükgüzel, S. G., Oruç, E. E., Rollas, S., Şahin, F. & Özbek, A. (2002). Eur. J. Med. Chem. 37, 197–206. Web of Science PubMed Google Scholar
Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2004). Antiviral Res. 63, 79–84. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vicini, P., Geronikaki, A., Anastásia, K., Incertia, M. & Zani, F. (2006). Bioorg. Med. Chem. 14, 3859–3864. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Applications of multi-component reactions (MCRs) in all areas of applied chemistry are very popular because they offer a wealth of products, while requiring only a minimum of effort. The derivatives incorporating the thiazolidine ring system are interesting compounds due to their biological properties. Some 4-thiazolidinones interfere with essential bacterial enzymes (Andres et al., 2000) and they also exhibit antibacterial (Vicini et al., 2006), antimycobacterial (Küçükgüzel et al., 2002), anti-HIV-1 (Barreca et al., 2001), and anticancer activities (Rao et al., 2004). A very recent article deals with similar structures demostrating potent antiproliferative activity for prostate cancer (Gududuru et al., 2004). As a part of an ongoing investigation on bioactive 4-thiazolidinones and related structures, we report here the synthesis and the crystal structure of title compound (I).
In (I) (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). The mean C—S bond length [1.816 (2) Å] is larger than the corresponding values in similar molecules [1.778 (2) Å (Akkurt et al., 2008), and 1.737 (5) Å (Akkurt et al., 2007)]. This may be due to the steric interactions among the sulfur and the other atoms around it.
In the title molecule, the five-membered thiazole ring (C1–C3/N1/S1) is in a twisted conformation, with maximum deviations from best least-square plane of -0.131 (1) and 0.143 (1) Å for atoms S1 and C3, respectively. The cyclohexane and morpholine rings (C3–C8) and (C12–C15/N2/O2) have chair conformations with puckering parameters (Cremer & Pople, 1975) QT = 0.549 (2) Å, θ =178.8 (2) ° and ϕ = 233 (10) °, and QT = 0.563 (2) Å, θ = 2.8 (2) ° and ϕ = 38 (7) °, respectively.
The molecules are stabilized by intramolecular C—H···S interactions, forming a five-membered ring. The packing of the molecules in the unitcell has a significant C14—H14B···O1?C2i interaction [symmetry code: (i) 1 + x, y, z], where O1 acts as a double acceptor to two symmetrically related H14B [H14B···O1 = 2.65 Å] (Table 1, Fig. 2).