organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1572-o1573

8-Methyl-4-morpholino­ethyl-1-thia-4-aza­spiro­[4.5]decan-3-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, İIstanbul University, Beyazıt 34116, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 July 2008; accepted 17 July 2008; online 23 July 2008)

In the title compound, C15H26N2O2S, the cyclo­hexane and morpholine rings adopt chair conformations, while the thia­zole ring has a twist conformation. An intra­molecular C—H⋯S hydrogen-bond inter­action forms a five-membered ring. The crystal packing involves C—H⋯O=C inter­molecular inter­actions where carbonyl O atoms act as double acceptors to two symmetrically related H atoms.

Related literature

For general background, see: Andres et al. (2000[Andres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H.-T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2000). Bioorg. Med. Chem. Lett. 10, 715-717.]); Vicini et al. (2006[Vicini, P., Geronikaki, A., Anastásia, K., Incertia, M. & Zani, F. (2006). Bioorg. Med. Chem. 14, 3859-3864.]); Küçükgüzel et al. (2002[Küçükgüzel, S. G., Oruç, E. E., Rollas, S., Şahin, F. & Özbek, A. (2002). Eur. J. Med. Chem. 37, 197-206.]); Barreca et al. (2001[Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A. M., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793-1796.]); Rao et al. (2004[Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2004). Antiviral Res. 63, 79-84.]); Gududuru et al. (2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]). For related literature, see: Akkurt et al. (2007[Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.], 2008[Akkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008). Acta Cryst. E64, o810-o811.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H26N2O2S

  • Mr = 298.45

  • Triclinic, [P \overline 1]

  • a = 7.8629 (4) Å

  • b = 10.5239 (6) Å

  • c = 10.8252 (6) Å

  • α = 94.974 (5)°

  • β = 106.378 (5)°

  • γ = 107.169 (4)°

  • V = 806.89 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.72 × 0.64 × 0.58 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.867, Tmax = 0.891

  • 17959 measured reflections

  • 3253 independent reflections

  • 2948 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.07

  • 3253 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯S1 0.97 2.83 3.217 (2) 105
C14—H14B⋯O1i 0.97 2.65 3.311 (3) 126
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Applications of multi-component reactions (MCRs) in all areas of applied chemistry are very popular because they offer a wealth of products, while requiring only a minimum of effort. The derivatives incorporating the thiazolidine ring system are interesting compounds due to their biological properties. Some 4-thiazolidinones interfere with essential bacterial enzymes (Andres et al., 2000) and they also exhibit antibacterial (Vicini et al., 2006), antimycobacterial (Küçükgüzel et al., 2002), anti-HIV-1 (Barreca et al., 2001), and anticancer activities (Rao et al., 2004). A very recent article deals with similar structures demostrating potent antiproliferative activity for prostate cancer (Gududuru et al., 2004). As a part of an ongoing investigation on bioactive 4-thiazolidinones and related structures, we report here the synthesis and the crystal structure of title compound (I).

In (I) (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). The mean C—S bond length [1.816 (2) Å] is larger than the corresponding values in similar molecules [1.778 (2) Å (Akkurt et al., 2008), and 1.737 (5) Å (Akkurt et al., 2007)]. This may be due to the steric interactions among the sulfur and the other atoms around it.

In the title molecule, the five-membered thiazole ring (C1–C3/N1/S1) is in a twisted conformation, with maximum deviations from best least-square plane of -0.131 (1) and 0.143 (1) Å for atoms S1 and C3, respectively. The cyclohexane and morpholine rings (C3–C8) and (C12–C15/N2/O2) have chair conformations with puckering parameters (Cremer & Pople, 1975) QT = 0.549 (2) Å, θ =178.8 (2) ° and ϕ = 233 (10) °, and QT = 0.563 (2) Å, θ = 2.8 (2) ° and ϕ = 38 (7) °, respectively.

The molecules are stabilized by intramolecular C—H···S interactions, forming a five-membered ring. The packing of the molecules in the unitcell has a significant C14—H14B···O1?C2i interaction [symmetry code: (i) 1 + x, y, z], where O1 acts as a double acceptor to two symmetrically related H14B [H14B···O1 = 2.65 Å] (Table 1, Fig. 2).

Related literature top

For general background, see: Andres et al. (2000); Vicini et al. (2006); Küçükgüzel et al. (2002); Barreca et al. (2001); Rao et al. (2004); Gududuru et al. (2004). For related literature, see: Akkurt et al. (2007, 2008). For bond- length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of morpholinoethylamin (5 mmol), 4-methyl cyclohexanone (5 mmol) and thioglycolicacid (20 mmol) in dry benzene (20 ml) was refluxed for 6 h using a Dean-Stark water separator. Excess solvent was evaporated in vacuo. The residue was taken up in chloroform. The chloroform layer was triturated with saturated NaHCO3 solution (2x) before drying over sodium sulfate and concentrated under reduced pressure to dryness. The crude product was purified by column chromatography on silica gel using hexane: acetone (80:20) as eluent to yield colourless prisms. IR (ν, cm-1): 1672 (C=O). 1H-NMR (δ, DMSO-d6, 400 MHz): 0.85 (3H, d, J=6.0 Hz, 8-CH3),1.09–1.25 (3H, m, cycl. CH), 1.60–1.70 (4H, m, cycl. CH), 1.90–2.05 (2H, m,cycl.CH), 2.30–2.45 (6H, m, morph. N—CH2), 3.27 (2H, t, J=7.6 Hz, N—CH2), 3.45 (2H, s, SCH2), 3.53 (4H, t, J=4.4 Hz, OCH2). LC—MS (m/z): 299 (M+1). Analysis calculated for C15H26N2O2S: C 60.37, H 8.78, N 9.39%. Found: C 59.91, H 8.24, N 9.32%.

Refinement top

All H-atoms were placed in calculated positions [C—H = 0.96–0.97 Å] and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 or 1.5 Ueq(C).

The highest residual electron density [0.71 e.A-3] was located at 0.86 Å from atom H1A and the deepest residual electron-density [-0.18 e.A-3] was located at 0.72 Å from atom S1. Probably due to the poor crystal quality, most of the reflections were weak. Analysis of the solvent void using PLATON (Spek, 2003) gave that unit cell contains no residual solvent accessible area.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the molecular packing in the unit cell.
8-Methyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5]decan-3-one top
Crystal data top
C15H26N2O2SZ = 2
Mr = 298.45F(000) = 324
Triclinic, P1Dx = 1.228 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8629 (4) ÅCell parameters from 29201 reflections
b = 10.5239 (6) Åθ = 2.0–28.0°
c = 10.8252 (6) ŵ = 0.20 mm1
α = 94.974 (5)°T = 296 K
β = 106.378 (5)°Block, colourless
γ = 107.169 (4)°0.72 × 0.64 × 0.58 mm
V = 806.89 (8) Å3
Data collection top
Stoe IPDS-2
diffractometer
3253 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2948 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.034
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.9°
ω scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.867, Tmax = 0.891l = 1313
17959 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.07P)2 + 0.1465P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H26N2O2Sγ = 107.169 (4)°
Mr = 298.45V = 806.89 (8) Å3
Triclinic, P1Z = 2
a = 7.8629 (4) ÅMo Kα radiation
b = 10.5239 (6) ŵ = 0.20 mm1
c = 10.8252 (6) ÅT = 296 K
α = 94.974 (5)°0.72 × 0.64 × 0.58 mm
β = 106.378 (5)°
Data collection top
Stoe IPDS-2
diffractometer
3253 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2948 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.891Rint = 0.034
17959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.72 e Å3
3253 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34108 (6)0.16629 (5)0.79000 (5)0.0644 (2)
O10.4404 (2)0.54993 (14)0.84353 (15)0.0737 (5)
O21.1634 (2)0.77257 (19)0.54682 (15)0.0857 (6)
N10.58740 (18)0.40139 (13)0.80741 (13)0.0476 (4)
N20.88645 (18)0.65537 (12)0.66493 (12)0.0465 (4)
C10.2920 (3)0.3148 (2)0.8397 (2)0.0649 (6)
C20.4460 (2)0.43541 (18)0.83066 (16)0.0545 (5)
C30.5878 (2)0.26243 (15)0.81122 (14)0.0444 (4)
C40.6416 (3)0.20501 (17)0.69912 (16)0.0541 (5)
C50.6455 (3)0.06167 (18)0.70696 (18)0.0623 (6)
C60.7743 (3)0.05266 (18)0.83773 (19)0.0592 (6)
C70.7230 (3)0.11180 (19)0.94940 (18)0.0587 (6)
C80.7174 (2)0.25365 (17)0.94280 (15)0.0522 (5)
C90.7691 (4)0.0928 (2)0.8470 (3)0.0830 (8)
C100.7529 (2)0.50806 (16)0.80326 (15)0.0506 (5)
C110.7251 (2)0.54594 (17)0.66860 (16)0.0530 (5)
C120.8409 (3)0.7076 (2)0.54383 (18)0.0651 (6)
C131.0103 (3)0.8188 (2)0.5390 (2)0.0794 (7)
C141.2124 (3)0.7255 (3)0.6657 (2)0.0766 (7)
C151.0497 (2)0.61291 (18)0.67652 (17)0.0557 (5)
H1A0.170900.312700.782800.0780*
H1B0.288900.319600.928900.0780*
H4A0.764600.263200.702100.0650*
H4B0.551700.204000.616200.0650*
H5A0.518900.001600.693200.0750*
H5B0.687200.031100.637300.0750*
H60.903300.107100.846300.0710*
H7A0.600700.053500.947700.0700*
H7B0.814000.113301.031900.0700*
H8A0.843700.314600.957100.0630*
H8B0.674500.283001.012400.0630*
H9A0.801400.129100.775700.1240*
H9B0.645000.147300.842600.1240*
H9C0.857800.093300.928600.1240*
H10A0.860800.477600.826500.0610*
H10B0.778800.587500.867400.0610*
H11A0.703600.467300.605000.0640*
H11B0.614400.573100.644000.0640*
H12A0.738400.742500.538700.0780*
H12B0.800400.634900.469300.0780*
H13A0.977700.852300.458000.0950*
H13B1.046700.893100.611200.0950*
H14A1.252300.799800.738600.0920*
H14B1.317200.693200.670900.0920*
H15A1.016600.535600.608000.0670*
H15B1.086900.585100.760300.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (2)0.0547 (3)0.0893 (4)0.0085 (2)0.0219 (2)0.0200 (2)
O10.0760 (9)0.0646 (8)0.0894 (10)0.0368 (7)0.0264 (7)0.0132 (7)
O20.0795 (10)0.1059 (12)0.0718 (9)0.0147 (9)0.0356 (7)0.0365 (8)
N10.0443 (6)0.0453 (7)0.0529 (7)0.0129 (5)0.0164 (5)0.0124 (5)
N20.0477 (7)0.0418 (6)0.0465 (6)0.0119 (5)0.0119 (5)0.0127 (5)
C10.0485 (9)0.0746 (12)0.0754 (11)0.0193 (8)0.0279 (8)0.0109 (9)
C20.0518 (9)0.0593 (9)0.0547 (9)0.0230 (7)0.0163 (7)0.0099 (7)
C30.0415 (7)0.0446 (7)0.0468 (7)0.0117 (6)0.0157 (6)0.0125 (6)
C40.0645 (10)0.0536 (9)0.0460 (8)0.0185 (7)0.0209 (7)0.0120 (6)
C50.0723 (11)0.0540 (9)0.0631 (10)0.0207 (8)0.0271 (8)0.0071 (8)
C60.0532 (9)0.0524 (9)0.0770 (11)0.0196 (7)0.0253 (8)0.0165 (8)
C70.0599 (10)0.0663 (10)0.0602 (9)0.0279 (8)0.0232 (8)0.0271 (8)
C80.0536 (8)0.0607 (9)0.0441 (8)0.0218 (7)0.0148 (6)0.0120 (6)
C90.0817 (14)0.0599 (11)0.1133 (18)0.0334 (10)0.0288 (13)0.0205 (11)
C100.0473 (8)0.0470 (8)0.0501 (8)0.0080 (6)0.0123 (6)0.0111 (6)
C110.0459 (8)0.0524 (8)0.0527 (8)0.0094 (7)0.0093 (6)0.0161 (7)
C120.0649 (10)0.0618 (10)0.0595 (10)0.0137 (8)0.0098 (8)0.0269 (8)
C130.0898 (15)0.0634 (11)0.0663 (11)0.0041 (10)0.0140 (10)0.0316 (9)
C140.0559 (10)0.0968 (15)0.0778 (13)0.0158 (10)0.0280 (9)0.0329 (11)
C150.0560 (9)0.0602 (9)0.0552 (9)0.0210 (7)0.0214 (7)0.0161 (7)
Geometric parameters (Å, º) top
S1—C11.791 (2)C4—H4A0.9700
S1—C31.8410 (17)C4—H4B0.9700
O1—C21.216 (2)C5—H5A0.9700
O2—C131.410 (3)C5—H5B0.9700
O2—C141.412 (3)C6—H60.9800
N1—C21.343 (2)C7—H7A0.9700
N1—C31.468 (2)C7—H7B0.9700
N1—C101.461 (2)C8—H8A0.9700
N2—C111.453 (2)C8—H8B0.9700
N2—C121.458 (2)C9—H9A0.9600
N2—C151.456 (2)C9—H9B0.9600
C1—C21.506 (3)C9—H9C0.9600
C3—C41.526 (3)C10—H10A0.9700
C3—C81.528 (2)C10—H10B0.9700
C4—C51.527 (3)C11—H11A0.9700
C5—C61.520 (3)C11—H11B0.9700
C6—C71.518 (3)C12—H12A0.9700
C6—C91.532 (3)C12—H12B0.9700
C7—C81.514 (3)C13—H13A0.9700
C10—C111.518 (2)C13—H13B0.9700
C12—C131.509 (3)C14—H14A0.9700
C14—C151.506 (3)C14—H14B0.9700
C1—H1A0.9700C15—H15A0.9700
C1—H1B0.9700C15—H15B0.9700
S1···N12.6062 (15)H5B···H9A2.5400
S1···H5A2.8300H7A···S12.8800
S1···H7A2.8800H7A···H9B2.4700
S1···H13Bi3.1500H7A···H7Aviii2.2900
S1···H13Aii3.0600H7B···H9C2.5200
O1···C113.321 (2)H7B···H9Cix2.5700
O1···C14iii3.311 (3)H8A···C102.8600
O1···C15iii3.380 (2)H8A···H10A2.3100
O1···C1iv3.395 (3)H8B···O1iv2.7600
O1···C2iv3.363 (2)H9A···N2x2.8100
O2···N22.856 (2)H9A···C12x3.0600
O2···C4v3.419 (3)H9A···H5B2.5400
O1···H10B2.5100H9B···H5A2.5500
O1···H15Biii2.8200H9B···H7A2.4700
O1···H1Biv2.6900H9C···H7B2.5200
O1···H8Biv2.7600H9C···H7Bix2.5700
O1···H11B2.8600H9C···H9Cix2.4900
O1···H14Biii2.6500H10A···C42.8600
N1···S12.6062 (15)H10A···C82.8600
N2···O22.856 (2)H10A···C152.7200
N2···H9Avi2.8100H10A···H4A2.3200
C1···O1iv3.395 (3)H10A···H8A2.3100
C2···O1iv3.363 (2)H10A···H15B2.1500
C2···C2iv3.565 (2)H10B···O12.5100
C4···C113.514 (2)H10B···H1Biv2.5900
C4···O2v3.419 (3)H11A···C42.9800
C11···O13.321 (2)H11A···H4A2.5800
C11···C43.514 (2)H11A···H12B2.4800
C14···O1vii3.311 (3)H11A···H15A2.3400
C15···O1vii3.380 (2)H11B···O12.8600
C2···H11B2.9700H11B···C22.9700
C4···H11A2.9800H11B···H12A2.3200
C4···H10A2.8600H12A···H11B2.3200
C8···H10A2.8600H12B···H11A2.4800
C10···H15B2.7000H12B···H15A2.4700
C10···H8A2.8600H13A···S1ii3.0600
C10···H4A2.7500H13B···S1xi3.1500
C12···H9Avi3.0600H13B···C153.1000
C15···H10A2.7200H13B···H14A2.3200
C15···H13B3.1000H14A···H13B2.3200
H1B···O1iv2.6900H14B···O1vii2.6500
H1B···H10Biv2.5900H15A···H11A2.3400
H4A···C102.7500H15A···H12B2.4700
H4A···H10A2.3200H15A···H15Av2.3100
H4A···H11A2.5800H15B···O1vii2.8200
H5A···S12.8300H15B···C102.7000
H5A···H9B2.5500H15B···H10A2.1500
C1—S1—C392.98 (9)C9—C6—H6108.00
C13—O2—C14109.27 (17)C6—C7—H7A109.00
C2—N1—C3118.93 (14)C6—C7—H7B109.00
C2—N1—C10119.11 (14)C8—C7—H7A109.00
C3—N1—C10120.98 (14)C8—C7—H7B109.00
C11—N2—C12110.57 (14)H7A—C7—H7B108.00
C11—N2—C15112.08 (13)C3—C8—H8A109.00
C12—N2—C15109.11 (15)C3—C8—H8B109.00
S1—C1—C2107.46 (16)C7—C8—H8A109.00
O1—C2—N1124.77 (17)C7—C8—H8B109.00
O1—C2—C1122.89 (18)H8A—C8—H8B108.00
N1—C2—C1112.34 (16)C6—C9—H9A110.00
S1—C3—N1103.37 (11)C6—C9—H9B109.00
S1—C3—C4108.79 (12)C6—C9—H9C109.00
S1—C3—C8110.62 (11)H9A—C9—H9B109.00
N1—C3—C4112.65 (13)H9A—C9—H9C109.00
N1—C3—C8111.03 (12)H9B—C9—H9C109.00
C4—C3—C8110.18 (14)N1—C10—H10A109.00
C3—C4—C5111.69 (15)N1—C10—H10B109.00
C4—C5—C6112.69 (15)C11—C10—H10A109.00
C5—C6—C7110.18 (19)C11—C10—H10B109.00
C5—C6—C9112.17 (18)H10A—C10—H10B108.00
C7—C6—C9110.37 (18)N2—C11—H11A109.00
C6—C7—C8113.08 (15)N2—C11—H11B109.00
C3—C8—C7112.40 (14)C10—C11—H11A109.00
N1—C10—C11111.79 (13)C10—C11—H11B109.00
N2—C11—C10112.12 (13)H11A—C11—H11B108.00
N2—C12—C13110.35 (17)N2—C12—H12A110.00
O2—C13—C12111.52 (18)N2—C12—H12B110.00
O2—C14—C15111.56 (18)C13—C12—H12A110.00
N2—C15—C14111.32 (17)C13—C12—H12B110.00
S1—C1—H1A110.00H12A—C12—H12B108.00
S1—C1—H1B110.00O2—C13—H13A109.00
C2—C1—H1A110.00O2—C13—H13B109.00
C2—C1—H1B110.00C12—C13—H13A109.00
H1A—C1—H1B109.00C12—C13—H13B109.00
C3—C4—H4A109.00H13A—C13—H13B108.00
C3—C4—H4B109.00O2—C14—H14A109.00
C5—C4—H4A109.00O2—C14—H14B109.00
C5—C4—H4B109.00C15—C14—H14A109.00
H4A—C4—H4B108.00C15—C14—H14B109.00
C4—C5—H5A109.00H14A—C14—H14B108.00
C4—C5—H5B109.00N2—C15—H15A109.00
C6—C5—H5A109.00N2—C15—H15B109.00
C6—C5—H5B109.00C14—C15—H15A109.00
H5A—C5—H5B108.00C14—C15—H15B109.00
C5—C6—H6108.00H15A—C15—H15B108.00
C7—C6—H6108.00
C3—S1—C1—C217.14 (14)C12—N2—C15—C1454.33 (18)
C1—S1—C3—C4140.08 (12)C12—N2—C11—C10168.37 (15)
C1—S1—C3—C898.77 (13)C15—N2—C12—C1354.9 (2)
C1—S1—C3—N120.15 (11)S1—C1—C2—O1171.24 (15)
C13—O2—C14—C1558.7 (2)S1—C1—C2—N18.90 (19)
C14—O2—C13—C1259.8 (2)N1—C3—C8—C7179.28 (15)
C3—N1—C2—O1172.02 (16)C8—C3—C4—C554.1 (2)
C10—N1—C2—O13.3 (2)S1—C3—C8—C766.56 (17)
C10—N1—C3—C869.70 (18)N1—C3—C4—C5178.67 (16)
C2—N1—C3—C4137.07 (16)C4—C3—C8—C753.77 (19)
C2—N1—C3—S119.82 (16)S1—C3—C4—C567.33 (18)
C10—N1—C3—S1171.66 (11)C3—C4—C5—C655.4 (2)
C10—N1—C2—C1176.58 (14)C4—C5—C6—C753.7 (2)
C10—N1—C3—C454.41 (19)C4—C5—C6—C9177.0 (2)
C2—N1—C3—C898.82 (17)C5—C6—C7—C853.1 (2)
C3—N1—C2—C17.8 (2)C9—C6—C7—C8177.6 (2)
C3—N1—C10—C11106.22 (16)C6—C7—C8—C354.4 (2)
C2—N1—C10—C1185.28 (18)N1—C10—C11—N2177.91 (13)
C11—N2—C15—C14177.14 (14)N2—C12—C13—O259.0 (2)
C11—N2—C12—C13178.59 (16)O2—C14—C15—N257.2 (2)
C15—N2—C11—C1069.65 (17)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+1; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x+1, y, z+2; (ix) x+2, y, z+2; (x) x, y1, z; (xi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···S10.972.833.217 (2)105
C14—H14B···O1vii0.972.653.311 (3)126
Symmetry code: (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H26N2O2S
Mr298.45
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8629 (4), 10.5239 (6), 10.8252 (6)
α, β, γ (°)94.974 (5), 106.378 (5), 107.169 (4)
V3)806.89 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.72 × 0.64 × 0.58
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.867, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
17959, 3253, 2948
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.07
No. of reflections3253
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.18

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···S10.972.833.217 (2)105
C14—H14B···O1i0.972.653.311 (3)126
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant No. F.279 of the University Research Fund). This work was supported by the Research Fund of İstanbul University (project Nos. 177/15012004 and UDP-730/05052006).

References

First citationAkkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008). Acta Cryst. E64, o810–o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H.-T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2000). Bioorg. Med. Chem. Lett. 10, 715–717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarreca, M. L., Chimirri, A., Luca, L. D., Monforte, A. M., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. 11, 1793–1796.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, S. G., Oruç, E. E., Rollas, S., Şahin, F. & Özbek, A. (2002). Eur. J. Med. Chem. 37, 197–206.  Web of Science PubMed Google Scholar
First citationRao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2004). Antiviral Res. 63, 79–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVicini, P., Geronikaki, A., Anastásia, K., Incertia, M. & Zani, F. (2006). Bioorg. Med. Chem. 14, 3859–3864.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1572-o1573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds