organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1574-o1575

rac-2-Hy­droxy-2,8-di­methyl-4-morpho­lino­ethyl-1-thia-4-aza­spiro­[4.5]decan-3-one

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, İIstanbul University, Beyazıt 34116, Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 July 2008; accepted 17 July 2008; online 23 July 2008)

The title compound, C16H28N2O3S, is dimerized by inversion symmetry-related inter­molecular O—H⋯N hydrogen bonding, forming an R22(16) motif. The dimers are also linked through inter­molecular C—H⋯O hydrogen bonding. The compound is chiral with a stereogenic centre located in the thia­zole ring, but in the crystal structure it forms a racemate. The thia­zole ring has an envelope conformation, while the cyclo­hexane and morpholine rings adopt chair conformations.

Related literature

For general background, see: Andres et al. (2000[Andres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H.-T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2000). Bioorg. Med. Chem. Lett. 10, 715-717.]); Çapan et al. (1999[Çapan, G., Ulusoy, N., Ergenç, N. & Kiraz, M. (1999). Monatsh. Chem. 130, 1399-1407.]); Srivastava et al. (2005[Srivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Kati, S. B. (2005). Arkivoc, (ii), 120-130.]). For related literature and bond-length data, see: Akkurt et al. (2007[Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.]); Akkurt, Yalçın, Güzeldemirci et al. (2008[Akkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008). Acta Cryst. E64, o810-o811.]); Akkurt, Yalçın, Klip et al. (2008[Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1572-o1573.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H28N2O3S

  • Mr = 328.47

  • Triclinic, [P \overline 1]

  • a = 8.0753 (4) Å

  • b = 10.2002 (5) Å

  • c = 11.8734 (6) Å

  • α = 82.467 (4)°

  • β = 71.487 (4)°

  • γ = 68.965 (4)°

  • V = 865.44 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.73 × 0.45 × 0.29 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.867, Tmax = 0.944

  • 18220 measured reflections

  • 3693 independent reflections

  • 3319 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.04

  • 3693 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 0.82 2.00 2.8104 (14) 169
C7—H7B⋯S1 0.97 2.82 3.2235 (18) 106
C14—H14B⋯O1ii 0.97 2.52 3.221 (2) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thiazolidinones and their spiroheterocyclic analogues have been reported to exhibit antibacterial (Andres et al., 2000), antifungal (Çapan et al., 1999) and antimycobacterial (Srivastava et al., 2005) activity. In view of these observations, we synthesized the title spiro[4.5]decane derivative as a racemate and report its crystal structure.

In the title molecule (Fig. 1), the values of the geometric parameters are normal and comparable with those in the similar compound, 8-methyl-4-morpholinoethyl-1-thia- 4-azaspiro[4.5]decan-3-one (Akkurt, Yalçın, Klip et al., 2008), which is a spiro[4.5]decane derivative.

The title compound is dimerized by inversion-symmetry related intermolecular O—H···N hydrogen bonds, forming an R22(16) motif (Bernstein et al.,1995) (Fig. 2). The dimers are interlinked through intermolecular C—H···O hydrogen bonds. The compound is chiral with a stereogenic centre C1, in the thiazole ring. As the structure is centrosymmetric, racemate occurs in the crystal. The thiazole ring (C1–C3/S1/N1) has an envelope conformation on S1 [puckering parameters (Cremer & Pople, 1975): Q(2) = 0.1885 (12) Å, ϕ(2) = 5.7 (4) °]. The cyclohexane and morpholine rings (C3–C8) and (C12–C15/N2/O2) adopt chair conformations [puckering parameters: QT = 0.563 (2) Å, θ = 177.6 (2) °, ϕ = 58 (4) °, and QT = 0.576 (2) Å, θ = 0.28 (15) °, ϕ = 340 (60) °, respectively].

The structure is stabilized by intramolecular C—H···S and intermolecular O—H···N and C—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background, see: Andres et al. (2000); Çapan et al. (1999); Srivastava et al. (2005). For related literature and bond-length data, see: Akkurt et al. (2007); Akkurt, Yalçın, Güzeldemirci et al. (2008); Akkurt, Yalçın, Klip et al. (2008). For ring conformation puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of morpholinoethylamin (5 mmol), 4-methyl cyclohexanone (5 mmol) and α-mercaptopropionic acid (20 mmol) in dry benzene (20 ml) was refluxed for 18 h using a Dean-Stark water separator. Excess solvent was evaporated in vacuo. The residue was taken up in chloroform. The chloroform layer was triturated with saturated NaHCO3 solution (2x) before drying over sodium sulfate and concentrated under reduced pressure to dryness. The crude product was triturated with diethyl ether several times and recrystallized from ethanol to yield racemic mixture as colourless prisms. IR (ν, cm-1): 1678 (C=O). 1H-NMR (δ, DMSO-d6, 400 MHz): 0.84 (3H, d, J=6.0 Hz, 8-CH3), 0.96–1.03 (1H, m, cycl. CH), 1.15–1.24 (1H, m, cycl.CH), 1.32–1.42 (3H, m, cycl.CH), 1.51–1.52 (1H, m, cycl.CH), 1.66 (2H, d, J=12.8 Hz, cycl.CH), 1.79 (1H, dd, J=12.8, 2.8 Hz, cycl.CH), 1.95- 2.10 (3H, m, SCHCH3), 2.33–2.44 (6H, m, morph.N—CH2), 3.30–3.37 (3H, m, SCH and N—CH2), 3.54 (4H, t, J=4.4 Hz, OCH2). LC—MS (m/z): 313 (M+1).

Refinement top

H atoms were positioned geometrically, with C—H = 0.98–0.96 Å, O—H = 0.82 Å and constrained to ride on their parent atoms. The thermal parameter of H-atoms of methyl and hydroxyl groups was taken 1.5 times of the parent atom, whereas for all other H-atoms it was taken 1.2 times of their parent atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the dimer generated by inversion symmetry related O—H···N hydrogen bonds, forming a R22(16) motif. For clarity, H atoms not involved in hydrogen bonds have been omitted.
rac-2-Hydroxy-2,8-dimethyl-4-morpholinoethyl-1-thia-4- azaspiro[4.5]decan-3-one top
Crystal data top
C16H28N2O3SZ = 2
Mr = 328.47F(000) = 356
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0753 (4) ÅCell parameters from 29023 reflections
b = 10.2002 (5) Åθ = 2.1–27.4°
c = 11.8734 (6) ŵ = 0.20 mm1
α = 82.467 (4)°T = 296 K
β = 71.487 (4)°Block, colourless
γ = 68.965 (4)°0.73 × 0.45 × 0.29 mm
V = 865.44 (8) Å3
Data collection top
Stoe IPDS-2
diffractometer
3693 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3319 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 26.9°, θmin = 2.1°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.867, Tmax = 0.944l = 1515
18220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1524P]
where P = (Fo2 + 2Fc2)/3
3693 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H28N2O3Sγ = 68.965 (4)°
Mr = 328.47V = 865.44 (8) Å3
Triclinic, P1Z = 2
a = 8.0753 (4) ÅMo Kα radiation
b = 10.2002 (5) ŵ = 0.20 mm1
c = 11.8734 (6) ÅT = 296 K
α = 82.467 (4)°0.73 × 0.45 × 0.29 mm
β = 71.487 (4)°
Data collection top
Stoe IPDS-2
diffractometer
3693 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3319 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.944Rint = 0.038
18220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
3693 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33771 (4)0.24227 (4)0.79561 (3)0.0486 (1)
O10.45350 (15)0.25388 (12)0.45525 (9)0.0555 (3)
O21.23062 (15)0.29531 (12)0.15285 (9)0.0597 (3)
O30.11938 (12)0.32395 (10)0.65362 (9)0.0480 (3)
N10.59680 (14)0.23670 (11)0.59509 (9)0.0389 (3)
N20.90885 (14)0.39307 (11)0.34820 (9)0.0372 (3)
C10.28811 (17)0.22315 (13)0.65981 (12)0.0417 (4)
C20.45358 (17)0.24085 (13)0.55883 (11)0.0408 (3)
C30.58346 (16)0.22120 (13)0.72210 (10)0.0369 (3)
C40.7085 (2)0.07643 (14)0.75151 (12)0.0482 (4)
C50.7034 (2)0.06187 (17)0.88162 (14)0.0583 (5)
C60.7495 (2)0.17691 (19)0.92078 (13)0.0587 (5)
C70.6200 (2)0.31982 (17)0.89350 (13)0.0541 (5)
C80.62959 (19)0.33651 (14)0.76215 (12)0.0445 (4)
C90.7389 (3)0.1587 (3)1.05180 (17)0.0881 (8)
C100.76951 (17)0.23709 (13)0.50474 (11)0.0413 (3)
C110.75792 (17)0.38482 (13)0.45390 (11)0.0408 (3)
C120.90146 (19)0.34106 (16)0.24137 (11)0.0471 (4)
C131.0540 (2)0.36400 (19)0.13593 (12)0.0584 (5)
C141.2384 (2)0.34737 (18)0.25562 (13)0.0554 (5)
C151.09318 (17)0.32359 (15)0.36461 (11)0.0432 (4)
C160.2750 (2)0.08031 (15)0.65024 (15)0.0561 (5)
H30.122100.402600.658200.0720*
H4A0.668700.004700.733100.0580*
H4B0.835000.061400.702200.0580*
H5A0.580700.063900.930200.0700*
H5B0.791300.028500.894800.0700*
H60.876900.169600.874900.0700*
H7A0.653700.393200.915100.0650*
H7B0.493700.330500.941000.0650*
H8A0.543000.427300.748500.0530*
H8B0.753300.333700.715100.0530*
H9A0.822700.068001.065400.1320*
H9B0.614700.166301.098300.1320*
H9C0.772700.230401.074300.1320*
H10A0.795400.175700.440900.0500*
H10B0.871100.200600.539700.0500*
H11A0.641700.427500.434600.0490*
H11B0.754500.440500.515400.0490*
H12A0.781700.390700.228100.0570*
H12B0.917500.241800.251400.0570*
H13A1.050100.328800.065100.0700*
H13B1.033200.463900.123900.0700*
H14A1.219200.447100.244800.0670*
H14B1.360300.300500.266400.0670*
H15A1.115700.223600.378300.0520*
H15B1.099700.361200.433400.0520*
H16A0.171600.068400.713000.0840*
H16B0.387200.007900.656700.0840*
H16C0.257900.074300.574900.0840*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0372 (2)0.0676 (2)0.0380 (2)0.0232 (2)0.0003 (1)0.0024 (1)
O10.0540 (6)0.0738 (7)0.0406 (5)0.0258 (5)0.0106 (4)0.0033 (4)
O20.0495 (6)0.0739 (7)0.0429 (5)0.0201 (5)0.0074 (4)0.0128 (5)
O30.0364 (5)0.0458 (5)0.0612 (6)0.0141 (4)0.0110 (4)0.0065 (4)
N10.0332 (5)0.0452 (6)0.0346 (5)0.0165 (4)0.0011 (4)0.0009 (4)
N20.0344 (5)0.0407 (5)0.0322 (5)0.0144 (4)0.0012 (4)0.0031 (4)
C10.0360 (6)0.0429 (6)0.0448 (7)0.0163 (5)0.0054 (5)0.0035 (5)
C20.0389 (6)0.0406 (6)0.0407 (6)0.0150 (5)0.0059 (5)0.0034 (5)
C30.0334 (5)0.0390 (6)0.0353 (6)0.0152 (5)0.0026 (4)0.0006 (4)
C40.0480 (7)0.0408 (7)0.0478 (7)0.0115 (6)0.0081 (6)0.0007 (5)
C50.0593 (9)0.0556 (8)0.0498 (8)0.0133 (7)0.0140 (7)0.0106 (6)
C60.0453 (7)0.0845 (11)0.0437 (7)0.0222 (7)0.0098 (6)0.0002 (7)
C70.0564 (8)0.0637 (9)0.0458 (7)0.0296 (7)0.0056 (6)0.0099 (6)
C80.0460 (7)0.0430 (7)0.0447 (7)0.0210 (5)0.0064 (5)0.0018 (5)
C90.0772 (13)0.1301 (19)0.0518 (10)0.0263 (12)0.0219 (9)0.0022 (10)
C100.0330 (6)0.0421 (6)0.0391 (6)0.0125 (5)0.0022 (5)0.0012 (5)
C110.0355 (6)0.0396 (6)0.0387 (6)0.0126 (5)0.0018 (5)0.0038 (5)
C120.0457 (7)0.0579 (8)0.0387 (6)0.0195 (6)0.0102 (5)0.0038 (5)
C130.0639 (9)0.0734 (10)0.0334 (7)0.0260 (8)0.0045 (6)0.0019 (6)
C140.0409 (7)0.0703 (9)0.0520 (8)0.0259 (7)0.0014 (6)0.0080 (7)
C150.0355 (6)0.0517 (7)0.0395 (6)0.0150 (5)0.0048 (5)0.0055 (5)
C160.0533 (8)0.0466 (8)0.0683 (9)0.0239 (6)0.0077 (7)0.0058 (6)
Geometric parameters (Å, º) top
S1—C11.8295 (14)C4—H4B0.9700
S1—C31.8410 (14)C5—H5A0.9700
O1—C21.2197 (16)C5—H5B0.9700
O2—C131.412 (2)C6—H60.9800
O2—C141.4204 (19)C7—H7A0.9700
O3—C11.3990 (17)C7—H7B0.9700
O3—H30.8200C8—H8A0.9700
N1—C31.4688 (15)C8—H8B0.9700
N1—C101.4659 (18)C9—H9A0.9600
N1—C21.3420 (19)C9—H9B0.9600
N2—C121.4633 (17)C9—H9C0.9600
N2—C151.4651 (19)C10—H10A0.9700
N2—C111.4636 (17)C10—H10B0.9700
C1—C21.535 (2)C11—H11A0.9700
C1—C161.520 (2)C11—H11B0.9700
C3—C81.524 (2)C12—H12A0.9700
C3—C41.5298 (19)C12—H12B0.9700
C4—C51.521 (2)C13—H13A0.9700
C5—C61.516 (2)C13—H13B0.9700
C6—C91.521 (2)C14—H14A0.9700
C6—C71.523 (2)C14—H14B0.9700
C7—C81.527 (2)C15—H15A0.9700
C10—C111.5297 (18)C15—H15B0.9700
C12—C131.513 (2)C16—H16A0.9600
C14—C151.506 (2)C16—H16B0.9600
C4—H4A0.9700C16—H16C0.9600
S1···N12.6146 (11)H5B···H9A2.4800
S1···H5A2.8900H6···H8B2.5600
S1···H7B2.8200H6···H16Av2.5100
O1···O32.8913 (15)H7A···H9C2.5400
O1···C113.187 (2)H7A···H14Avi2.5400
O1···C14i3.221 (2)H7B···S12.8200
O1···C15i3.230 (2)H7B···O2x2.8100
O2···N22.8364 (16)H7B···H5A2.5600
O3···C15ii3.3942 (17)H7B···H9B2.5300
O3···O12.8913 (15)H8A···H12Aii2.5600
O3···N2ii2.8104 (14)H8B···O3v2.7800
O1···H10A2.5400H8B···C102.7500
O1···H11A2.6600H8B···C113.0700
O1···H15Bi2.7500H8B···H62.5600
O1···H16C2.8000H8B···H10B2.3800
O1···H14Bi2.5200H8B···H11B2.4700
O1···H16Biii2.8200H8B···H14Avi2.4400
O2···H9Biv2.7900H9A···H5B2.4800
O2···H7Biv2.8100H9B···O2x2.7900
O3···H15Bi2.6400H9B···C14x3.0700
O3···H8Bi2.7800H9B···H5A2.5000
O3···H14Aii2.9100H9B···H7B2.5300
N1···S12.6146 (11)H9B···H14Bx2.4800
N2···O22.8364 (16)H9C···C12xi3.0000
N2···O3ii2.8104 (14)H9C···H7A2.5400
N2···H3ii2.0000H10A···O12.5400
C2···C11ii3.5847 (18)H10A···C122.8100
C8···C113.4925 (18)H10A···H12B2.2700
C11···C83.4925 (18)H10B···C42.8100
C11···C2ii3.5847 (18)H10B···C82.9100
C11···O13.187 (2)H10B···C152.7700
C14···O1v3.221 (2)H10B···H4B2.2500
C15···O1v3.230 (2)H10B···H8B2.3800
C15···O3ii3.3942 (17)H10B···H15A2.3300
C2···H11A2.8300H11A···O12.6600
C4···H10B2.8100H11A···C22.8300
C8···H14Avi2.8600H11A···H12A2.3700
C8···H10B2.9100H11A···C11ii3.0600
C8···H11B2.9700H11A···H11Aii2.4000
C10···H12B2.8600H11B···C82.9700
C10···H4B2.8300H11B···H8B2.4700
C10···H15A2.6800H11B···H15B2.5000
C10···H8B2.7500H12A···H11A2.3700
C11···H8B3.0700H12A···H8Aii2.5600
C11···H3ii2.7100H12B···C102.8600
C11···H11Aii3.0600H12B···H10A2.2700
C12···H3ii2.9300H12B···H15A2.4700
C12···H10A2.8100H13B···H14A2.3400
C12···H9Cvii3.0000H14A···H13B2.3400
C14···H9Biv3.0700H14A···O3ii2.9100
C14···H3ii3.0800H14A···C8vi2.8600
C15···H10B2.7700H14A···H3ii2.5900
C15···H3ii2.7400H14A···H7Avi2.5400
H3···N2ii2.0000H14A···H8Bvi2.4400
H3···C11ii2.7100H14B···O1v2.5200
H3···C12ii2.9300H14B···H9Biv2.4800
H3···C14ii3.0800H15A···C102.6800
H3···C15ii2.7400H15A···H10B2.3300
H3···H14Aii2.5900H15A···H12B2.4700
H4A···H15Aviii2.5800H15A···H4Aviii2.5800
H4B···C102.8300H15B···O1v2.7500
H4B···H10B2.2500H15B···O3v2.6400
H5A···S12.8900H15B···H11B2.5000
H5A···H7B2.5600H16A···H6i2.5100
H5A···H9B2.5000H16B···O1iii2.8200
H5A···H5Aix2.3300H16C···O12.8000
C1—S1—C394.96 (6)C6—C7—H7B109.00
C13—O2—C14109.74 (12)C8—C7—H7A109.00
C1—O3—H3109.00C8—C7—H7B109.00
C2—N1—C10118.36 (10)H7A—C7—H7B108.00
C3—N1—C10121.36 (11)C3—C8—H8A109.00
C2—N1—C3120.12 (11)C3—C8—H8B109.00
C11—N2—C15113.24 (10)C7—C8—H8A109.00
C12—N2—C15109.83 (11)C7—C8—H8B109.00
C11—N2—C12113.29 (11)H8A—C8—H8B108.00
S1—C1—C2104.53 (10)C6—C9—H9A109.00
S1—C1—C16113.45 (10)C6—C9—H9B109.00
S1—C1—O3110.65 (9)C6—C9—H9C109.00
O3—C1—C16107.00 (12)H9A—C9—H9B110.00
C2—C1—C16108.91 (11)H9A—C9—H9C109.00
O3—C1—C2112.40 (11)H9B—C9—H9C109.00
O1—C2—C1121.93 (14)N1—C10—H10A109.00
N1—C2—C1113.93 (11)N1—C10—H10B109.00
O1—C2—N1124.12 (13)C11—C10—H10A109.00
S1—C3—N1103.79 (9)C11—C10—H10B109.00
S1—C3—C8109.34 (9)H10A—C10—H10B108.00
N1—C3—C4111.50 (10)N2—C11—H11A108.00
S1—C3—C4110.49 (9)N2—C11—H11B108.00
C4—C3—C8110.34 (12)C10—C11—H11A108.00
N1—C3—C8111.20 (10)C10—C11—H11B108.00
C3—C4—C5111.95 (11)H11A—C11—H11B107.00
C4—C5—C6112.88 (13)N2—C12—H12A110.00
C5—C6—C7109.51 (14)N2—C12—H12B110.00
C7—C6—C9111.87 (16)C13—C12—H12A110.00
C5—C6—C9110.62 (16)C13—C12—H12B110.00
C6—C7—C8111.54 (12)H12A—C12—H12B108.00
C3—C8—C7111.69 (12)O2—C13—H13A109.00
N1—C10—C11111.71 (11)O2—C13—H13B109.00
N2—C11—C10115.84 (11)C12—C13—H13A109.00
N2—C12—C13109.15 (13)C12—C13—H13B109.00
O2—C13—C12111.53 (12)H13A—C13—H13B108.00
O2—C14—C15111.11 (14)O2—C14—H14A109.00
N2—C15—C14109.61 (11)O2—C14—H14B109.00
C3—C4—H4A109.00C15—C14—H14A109.00
C3—C4—H4B109.00C15—C14—H14B109.00
C5—C4—H4A109.00H14A—C14—H14B108.00
C5—C4—H4B109.00N2—C15—H15A110.00
H4A—C4—H4B108.00N2—C15—H15B110.00
C4—C5—H5A109.00C14—C15—H15A110.00
C4—C5—H5B109.00C14—C15—H15B110.00
C6—C5—H5A109.00H15A—C15—H15B108.00
C6—C5—H5B109.00C1—C16—H16A109.00
H5A—C5—H5B108.00C1—C16—H16B109.00
C5—C6—H6108.00C1—C16—H16C109.00
C7—C6—H6108.00H16A—C16—H16B109.00
C9—C6—H6108.00H16A—C16—H16C109.00
C6—C7—H7A109.00H16B—C16—H16C109.00
C3—S1—C1—O3136.07 (10)C12—N2—C15—C1456.88 (15)
C3—S1—C1—C214.85 (9)C12—N2—C11—C1071.48 (15)
C3—S1—C1—C16103.66 (11)S1—C1—C2—N112.26 (13)
C1—S1—C3—N113.84 (9)O3—C1—C2—O149.39 (17)
C1—S1—C3—C4105.81 (9)O3—C1—C2—N1132.32 (12)
C1—S1—C3—C8132.57 (9)C16—C1—C2—O169.00 (17)
C14—O2—C13—C1259.69 (17)C16—C1—C2—N1109.30 (13)
C13—O2—C14—C1559.60 (16)S1—C1—C2—O1169.45 (11)
C2—N1—C10—C1179.30 (14)N1—C3—C8—C7178.85 (12)
C3—N1—C2—O1179.78 (12)C8—C3—C4—C552.97 (16)
C10—N1—C2—O14.83 (19)S1—C3—C8—C767.13 (14)
C3—N1—C10—C11105.38 (13)N1—C3—C4—C5177.06 (13)
C2—N1—C3—C8126.75 (13)C4—C3—C8—C754.59 (16)
C10—N1—C3—C858.01 (15)S1—C3—C4—C568.06 (15)
C10—N1—C2—C1173.42 (10)C3—C4—C5—C654.55 (19)
C2—N1—C3—C4109.65 (14)C4—C5—C6—C755.23 (18)
C2—N1—C3—S19.30 (13)C4—C5—C6—C9178.97 (16)
C10—N1—C3—S1175.45 (9)C5—C6—C7—C856.25 (18)
C10—N1—C3—C465.59 (15)C9—C6—C7—C8179.25 (16)
C3—N1—C2—C11.97 (16)C6—C7—C8—C357.30 (18)
C11—N2—C12—C13175.83 (12)N1—C10—C11—N2169.01 (11)
C15—N2—C11—C1054.44 (15)N2—C12—C13—O258.47 (17)
C15—N2—C12—C1356.45 (15)O2—C14—C15—N258.52 (16)
C11—N2—C15—C14175.38 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z1; (v) x+1, y, z; (vi) x+2, y+1, z+1; (vii) x, y, z1; (viii) x+2, y, z+1; (ix) x+1, y, z+2; (x) x1, y, z+1; (xi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2ii0.822.002.8104 (14)169
C7—H7B···S10.972.823.2235 (18)106
C14—H14B···O1v0.972.523.221 (2)129
Symmetry codes: (ii) x+1, y+1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H28N2O3S
Mr328.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0753 (4), 10.2002 (5), 11.8734 (6)
α, β, γ (°)82.467 (4), 71.487 (4), 68.965 (4)
V3)865.44 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.73 × 0.45 × 0.29
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.867, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
18220, 3693, 3319
Rint0.038
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.04
No. of reflections3693
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.002.8104 (14)169
C7—H7B···S10.972.823.2235 (18)106
C14—H14B···O1ii0.972.523.221 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant No. F.279 of the University Research Fund). This work was supported by the Research Fund of İstanbul University (project Nos. 177/15012004 and UDP-730/05052006).

References

First citationAkkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008). Acta Cryst. E64, o810–o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1572–o1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H.-T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2000). Bioorg. Med. Chem. Lett. 10, 715–717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇapan, G., Ulusoy, N., Ergenç, N. & Kiraz, M. (1999). Monatsh. Chem. 130, 1399–1407.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Kati, S. B. (2005). Arkivoc, (ii), 120–130.  CrossRef Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1574-o1575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds