metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1048-m1049

Redetermination of poly[μ-chlorido-hepta­chlorido-μ3-L-proline-μ2-L-proline-tetra­mercury(II)]

aCrystal Growth Centre, Anna University, Chennai 600025, India, and bDepartment of Physics, Presidency College, Chennai 600005, India
*Correspondence e-mail: rjvel@yahoo.com

(Received 5 June 2008; accepted 14 July 2008; online 19 July 2008)

The asymmetric unit of the title compound, [Hg4Cl8(C5H9NO2)2]n, consists of four HgCl2 units and two L-proline ligands in the zwitterionic form. In each HgCl2 unit, the HgII ion is strongly bonded to two Cl atoms, and the HgII ions in two of the HgCl2 units are chelated by O atoms of two L-proline ligands, with one strong and one weak Hg—O bond. In the crystal structure, HgCl2 and L-proline units are linked to form an extended chain along the a axis. The chain structure is further stabilized by N—H⋯Cl hydrogen bonds, and the chains are arranged in layers parallel to the ab plane. The structure of the title compound was originally determined by Ehsan, Malik & Haider [(1996). J. Banglad. Acad. Sci. 20, 175] but no three-dimensional coordinates are available.

Related literature

For related literature, see: Janczak & Luger (1997[Janczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954-1956.]); Jiang & Fang (1999[Jiang, M. H. & Fang, Q. (1999). Adv. Mater. 11, 1147-1151.]); Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.]); Long (1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.]); McL Mathieson & Welsh (1952[McL Mathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599-604.]); Nockemann & Meyer (2002[Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, i68-i69.]); Padmanabhan et al. (1995[Padmanabhan, S., Suresh, S. & Vijayan, M. (1995). Acta Cryst. C51, 2098-2100.]); Pandiarajan et al. (2002a[Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002a). Acta Cryst. E58, o74-o76.],b[Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002b). Acta Cryst. E58, o862-o864.]); Schaffers & Keszler (1993[Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156-1158.]); Subha Nandhini et al. (2001[Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 423-424.]); Tedmann et al. (2004[Tedmann, O. M., Zavalij, P. Y., Madan, S. K. & Oliver, S. R. J. (2004). Acta Cryst. E60, m1706-m1707.]); Yukawa et al. (1982[Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135-3137.], 1983[Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.], 1985[Yukawa, Y., Yasukawa, N., Inomata, Y. & Takeuchi, T. (1985). Bull. Chem. Soc. Jpn, 58, 1591-1592.]); Ehsan et al. (1996[Ehsan, M. Q., Malik, K. M. A. & Haider, S. Z. (1996). J. Banglad. Acad. Sci. 20, 175.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg4Cl8(C5H9NO2)2]

  • Mr = 1316.23

  • Triclinic, P 1

  • a = 7.2742 (4) Å

  • b = 9.4472 (5) Å

  • c = 10.4767 (6) Å

  • α = 108.621 (3)°

  • β = 107.260 (2)°

  • γ = 97.353 (2)°

  • V = 631.51 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 25.10 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.082, Tmax = 0.188 (expected range = 0.035–0.081)

  • 10896 measured reflections

  • 3956 independent reflections

  • 3773 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.03

  • 3956 reflections

  • 255 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −2.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1736 Friedel pairs

  • Flack parameter: 0.057 (16)

Table 1
Selected bond lengths (Å)

O4—Hg4 2.888 (10)
O4—Hg3 2.828 (11)
O2—Hg2 2.869 (13)
O1—Hg1 2.564 (11)
O1—Hg2 2.566 (12)
O3—Hg3 2.486 (13)
O3—Hg2 2.634 (12)
Cl1—Hg1 2.326 (6)
Cl2—Hg1 2.276 (6)
Cl3—Hg2 2.323 (6)
Cl4—Hg2 2.337 (6)
Cl5—Hg3 2.316 (6)
Cl6—Hg3 2.304 (6)
Cl7—Hg4 2.300 (6)
Cl8—Hg4 2.255 (7)
Hg1—Cl3i 3.009 (6)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl7i 0.90 2.63 3.282 (14) 130
N1—H1B⋯Cl6i 0.90 2.40 3.290 (16) 167
N2—H2A⋯Cl4ii 0.90 2.40 3.267 (15) 163
N2—H2B⋯Cl5ii 0.90 2.60 3.234 (15) 128
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

During the last few years, organic non-linear optical (NLO) crystals have attracted much interest due to their superior properties over inorganic NLO materials, such as higher susceptibility, faster response and the capability of designing components on the molecular level. However, unlike inorganic NLO crystals, they have not come into wide use, owing to drawbacks such as the difficulty of growing large size perfect single crystals and poor physicochemical stability. Under these circumstances, crystals of metal-organic materials with NLO effects have been developed which are expected not only to retain high NLO effects, but also to minimize some of the shortcomings of pure organic crystals; in other words, they have the advantages of both organic and inorganic crystals in terms of their physicochemical properties. This approach has resulted in their practical use in frequency-doubling of laser radiation (Long, 1995; Jiang & Fang, 1999). The crystal structure of L-proline monohydrate (Janczak & Luger, 1997), DL-proline monohydrate (Padmanabhan et al., 1995), L-prolinium tartrate (Subha Nandhini et al.,2001), bis (L-proline) hydrogen (1+) perchlorate (Pandiarajan et al.,2002a), bis (L-proline) hydrogen nitrate (Pandiarajan et al., 2002b), L-alanine cadmium chloride (Schaffers & Keszler, 1993), dichloro(4-hydroxy-L-proline)cadmium(II) (Yukawa et al., 1982), dichloro(L-proline)cadmium(II) hydrate (Yukawa et al., 1983), dichlorobis(L-proline)Zinc(II) (Yukawa et al., 1985) and bis-DL-prolinatocopper(II)dihydrate (McL Mathieson & Welsh, 1952) have been reported. The present study reports the crystal structure of the title salt, a complex of L-proline with mercury chloride. The second harmonic generation (SHG) effect of the crystals was measured by the powder SHG technique (Kurtz & Perry, 1968) and was found to be 2.5 times that of potassium dihydrogen phosphate crystals.

The asymmetric unit consists of four HgCl2 units and two L-proline zwitterions (Fig.1). In each HgCl2 units the metal atom is strongly bonded to two Cl atoms, with Hg—Cl distances in the range 2.255 (7) Å–2.337 (6) Å. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002) and (2,2-bipyridine N,N'-dioxide-k2O,O')dichloro-mercury(II) (Tedmann et al., 2004). Metal atoms in two HgCl2 units (Hg2 and Hg3) are also chelated by carboxylate O atoms of two L-proline ligands, with one strong and one weak Hg—O bonds [Hg2—O1 2.566 (12) Å, Hg2—O2 2.869 (13) Å, Hg3—O3 2.486 (13) Å and Hg3—O4 2.828 (13) Å]. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002). The two HgCl2L units (L is L-proline) are linked via Hg2—O3 bond [Hg2—O3 2.634 (12) Å]. Of the remaining two HgCl2units, one unit (Hg1) is bonded to atom O1 of the adjacent L-proline ligand and atom Cl3 in the adjacent unit cell [Hg1···O1 2.564 (11) Å and Hg1—Cl3(1 + x,y,z) 3.009 (7) Å], and the other unit is weakly bonded with atom O4 [Hg4—O4 2.888 (12) Å]. The geometry around metal atoms Hg1, Hg2 and Hg3 is nearly linear as a result of constraints imposed by chelation [Cl2—Hg1—Cl1 168.25 (18)°, Cl3—Hg2—Cl4 166.19 (18)° and Cl6—Hg3—Cl5 163.51 (18)°] whereas that around atom Hg4 is linear [Cl8—Hg4—Cl7 178.5 (3)°].

In the crystal structure, the HgCl2 and L-proline units are linked to form an extended chain along the a axis (Fig.2). The chain structure is further strengthened by N—H···Cl hydrogen bonds (Table 2). The polymeric chains are arranged into layers parallel to the ab plane (Fig.3). The structure of the title compound was originally determined by Ehsan et al. (1996) but no three-dimensional coordinates are available.

Related literature top

For related literature, see: Janczak & Luger (1997); Jiang & Fang (1999); Kurtz & Perry (1968); Long (1995); McL Mathieson & Welsh (1952); Nockemann & Meyer (2002); Padmanabhan et al. (1995); Pandiarajan et al. (2002a,b); Schaffers & Keszler (1993); Subha Nandhini et al. (2001); Tedmann et al. (2004);Yukawa et al. (1982, 1983, 1985); Ehsan et al. (1996).

Experimental top

The title compound was crystallized at room temperature by slow evaporation of an aqueous solution of L-proline and mercury(II) chloride in a stoichimetric ratio of 1:2.

Refinement top

The large anisotropic displacement parameters of atoms C3, C8 and C9 suggested disorder in five-membered rings. But attempts to refine the structure with a disorder model did not improve these parameters. Hence, during the final cycles of refinement the Uij components of atoms C3, C8 and C9 were restrained to approximate isotropic behaviour. The unresolved disorder resulted in poor precision on C—C bond lengths. H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N—H = 0.90 Å and C—H = 0.97 or 0.98 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Atom Cl3A is generated by the symmetry operation (1+ x, y, z). Dashed bonds indicate weak interactions.
[Figure 2] Fig. 2. Part of an extended chain running along the a axis. Dashed bonds indicate weak interactions.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.`
poly[µ-chlorido-heptachlorido-µ3-L-proline-µ2-L-proline-tetramercury(II)] top
Crystal data top
[Hg4Cl8(C5H9NO2)2]Z = 1
Mr = 1316.23F(000) = 580
Triclinic, P1Dx = 3.461 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2742 (4) ÅCell parameters from 5619 reflections
b = 9.4472 (5) Åθ = 2.4–35.5°
c = 10.4767 (6) ŵ = 25.10 mm1
α = 108.621 (3)°T = 293 K
β = 107.260 (2)°Plate, pale brown
γ = 97.353 (2)°0.20 × 0.10 × 0.10 mm
V = 631.51 (6) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3956 independent reflections
Radiation source: fine-focus sealed tube3773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 68
Tmin = 0.082, Tmax = 0.188k = 1111
10896 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0781P)2 + 1.0577P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.75 e Å3
3956 reflectionsΔρmin = 2.51 e Å3
255 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraintsExtinction coefficient: 0.0066 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1736 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.057 (16)
Crystal data top
[Hg4Cl8(C5H9NO2)2]γ = 97.353 (2)°
Mr = 1316.23V = 631.51 (6) Å3
Triclinic, P1Z = 1
a = 7.2742 (4) ÅMo Kα radiation
b = 9.4472 (5) ŵ = 25.10 mm1
c = 10.4767 (6) ÅT = 293 K
α = 108.621 (3)°0.20 × 0.10 × 0.10 mm
β = 107.260 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3956 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3773 reflections with I > 2σ(I)
Tmin = 0.082, Tmax = 0.188Rint = 0.044
10896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.111Δρmax = 1.75 e Å3
S = 1.03Δρmin = 2.51 e Å3
3956 reflectionsAbsolute structure: Flack (1983), 1736 Friedel pairs
255 parametersAbsolute structure parameter: 0.057 (16)
21 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.899 (3)0.4306 (18)0.7785 (18)0.028 (4)
C20.969 (2)0.3323 (15)0.6707 (14)0.029 (3)
H21.10920.37620.69310.034*
C30.849 (3)0.307 (2)0.515 (2)0.061 (5)
H3A0.72620.33950.50910.073*
H3B0.92460.36470.47790.073*
C40.805 (3)0.135 (2)0.4312 (19)0.053 (5)
H4A0.68510.10110.34670.063*
H4B0.91450.10990.40040.063*
C50.782 (3)0.063 (2)0.529 (2)0.054 (5)
H5A0.80720.03910.50140.065*
H5B0.64960.05420.53290.065*
C60.330 (2)0.4234 (17)1.0096 (17)0.029 (4)
C70.286 (2)0.5707 (15)1.1024 (14)0.031 (3)
H70.23940.63011.04310.037*
C80.224 (3)0.559 (3)1.308 (2)0.066 (5)
H8A0.27750.47421.32300.079*
H8B0.13110.57751.35840.079*
C90.385 (4)0.700 (3)1.359 (3)0.074 (7)
H9A0.48880.71161.44800.089*
H9B0.33410.79191.37560.089*
C100.463 (3)0.673 (2)1.237 (2)0.059 (5)
H10A0.57090.62271.25140.070*
H10B0.51030.77011.22930.070*
N10.942 (2)0.1748 (13)0.6775 (12)0.040 (3)
H1A0.90100.17440.75040.048*
H1B1.05750.14600.69150.048*
N20.1290 (17)0.5265 (14)1.1579 (15)0.042 (3)
H2A0.03690.58091.14480.050*
H2B0.06850.42561.11030.050*
O10.9293 (18)0.5718 (13)0.7961 (14)0.044 (3)
O20.8094 (19)0.3750 (13)0.8405 (12)0.050 (3)
O30.457 (2)0.4477 (15)0.9648 (17)0.055 (4)
O40.2390 (17)0.2970 (11)0.9976 (12)0.039 (3)
Cl11.3639 (8)0.8860 (6)0.9691 (6)0.0403 (14)
Cl20.9186 (9)0.6904 (7)0.5046 (7)0.0569 (15)
Cl30.4113 (9)0.5596 (8)0.6683 (7)0.0463 (14)
Cl40.8766 (8)0.7849 (6)1.1323 (6)0.0388 (11)
Cl50.7759 (8)0.2678 (7)1.1413 (6)0.0430 (13)
Cl60.3481 (8)0.0587 (7)0.6721 (6)0.0504 (14)
Cl70.1508 (9)0.0454 (6)0.8492 (6)0.0408 (14)
Cl80.2824 (12)0.1691 (10)1.3145 (8)0.076 (2)
Hg11.13721 (7)0.76197 (5)0.73403 (5)0.0368 (2)
Hg20.65755 (7)0.64526 (5)0.89544 (5)0.0337 (2)
Hg30.54733 (7)0.19563 (5)0.91009 (5)0.0357 (2)
Hg40.07001 (8)0.06525 (6)1.08346 (6)0.0426 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (9)0.035 (8)0.017 (8)0.013 (6)0.017 (7)0.004 (7)
C20.038 (8)0.030 (7)0.021 (7)0.013 (6)0.019 (6)0.005 (6)
C30.083 (9)0.056 (8)0.047 (8)0.015 (6)0.012 (6)0.034 (7)
C40.077 (14)0.041 (9)0.014 (8)0.002 (8)0.007 (8)0.010 (7)
C50.072 (13)0.036 (9)0.044 (11)0.002 (8)0.022 (10)0.006 (8)
C60.024 (9)0.034 (8)0.025 (8)0.002 (6)0.007 (7)0.012 (7)
C70.045 (9)0.033 (7)0.012 (6)0.008 (6)0.014 (6)0.002 (6)
C80.059 (8)0.086 (9)0.060 (9)0.010 (6)0.039 (7)0.024 (7)
C90.071 (10)0.079 (10)0.066 (10)0.005 (7)0.022 (8)0.025 (8)
C100.036 (10)0.072 (12)0.044 (11)0.014 (8)0.006 (8)0.010 (9)
N10.073 (9)0.030 (6)0.022 (6)0.017 (6)0.017 (6)0.012 (5)
N20.025 (6)0.040 (6)0.052 (9)0.002 (5)0.009 (6)0.015 (6)
O10.055 (8)0.034 (6)0.052 (8)0.012 (5)0.030 (6)0.016 (6)
O20.067 (8)0.052 (7)0.028 (6)0.007 (6)0.029 (6)0.008 (5)
O30.078 (9)0.044 (7)0.066 (10)0.022 (6)0.054 (8)0.024 (7)
O40.052 (7)0.026 (5)0.032 (6)0.000 (5)0.018 (5)0.004 (5)
Cl10.034 (3)0.041 (3)0.040 (3)0.006 (2)0.008 (2)0.013 (2)
Cl20.054 (3)0.057 (3)0.049 (3)0.021 (3)0.003 (2)0.017 (3)
Cl30.039 (3)0.058 (3)0.038 (3)0.012 (2)0.010 (2)0.017 (2)
Cl40.044 (3)0.034 (2)0.032 (3)0.005 (2)0.012 (2)0.008 (2)
Cl50.040 (3)0.055 (3)0.026 (3)0.002 (2)0.009 (2)0.011 (2)
Cl60.045 (3)0.059 (3)0.034 (3)0.008 (2)0.007 (2)0.008 (3)
Cl70.051 (3)0.037 (3)0.036 (3)0.012 (2)0.016 (2)0.015 (2)
Cl80.063 (4)0.093 (5)0.038 (3)0.005 (3)0.004 (3)0.006 (3)
Hg10.0368 (4)0.0374 (4)0.0338 (4)0.0094 (3)0.0100 (3)0.0127 (3)
Hg20.0300 (4)0.0369 (4)0.0325 (4)0.0074 (3)0.0099 (3)0.0125 (3)
Hg30.0298 (4)0.0387 (4)0.0323 (4)0.0050 (3)0.0082 (3)0.0097 (3)
Hg40.0438 (5)0.0425 (4)0.0349 (5)0.0072 (3)0.0095 (3)0.0119 (4)
Geometric parameters (Å, º) top
C1—O21.224 (19)C9—C101.51 (3)
C1—O11.267 (19)C9—H9A0.97
C1—C21.480 (19)C9—H9B0.97
C2—N11.502 (16)C10—H10A0.97
C2—C31.53 (2)C10—H10B0.97
C2—H20.98N1—H1A0.90
C3—C41.52 (2)N1—H1B0.90
C3—H3A0.97N2—H2A0.90
C3—H3B0.97N2—H2B0.90
C4—C51.44 (2)O4—Hg42.888 (10)
C4—H4A0.97O4—Hg32.828 (11)
C4—H4B0.97O2—Hg22.869 (13)
C5—N11.57 (2)O1—Hg12.564 (11)
C5—H5A0.97O1—Hg22.566 (12)
C5—H5B0.97O3—Hg32.486 (13)
C6—O31.18 (2)O3—Hg22.634 (12)
C6—O41.236 (17)Cl1—Hg12.326 (6)
C6—C71.56 (2)Cl2—Hg12.276 (6)
C7—N21.495 (18)Cl3—Hg22.323 (6)
C7—C101.52 (2)Cl4—Hg22.337 (6)
C7—H70.98Cl5—Hg32.316 (6)
C8—N21.43 (2)Cl6—Hg32.304 (6)
C8—C91.49 (3)Cl7—Hg42.300 (6)
C8—H8A0.97Cl8—Hg42.255 (7)
C8—H8B0.97Hg1—Cl3i3.009 (6)
O2—C1—O1123.4 (15)C9—C10—H10B110.8
O2—C1—C2120.9 (14)C7—C10—H10B110.8
O1—C1—C2115.6 (13)H10A—C10—H10B108.9
C1—C2—N1108.0 (11)C2—N1—C5106.4 (11)
C1—C2—C3113.8 (14)C2—N1—H1A110.5
N1—C2—C3105.4 (12)C5—N1—H1A110.5
C1—C2—H2109.8C2—N1—H1B110.5
N1—C2—H2109.8C5—N1—H1B110.5
C3—C2—H2109.8H1A—N1—H1B108.6
C4—C3—C2105.3 (13)C8—N2—C7107.8 (12)
C4—C3—H3A110.7C8—N2—H2A110.2
C2—C3—H3A110.7C7—N2—H2A110.2
C4—C3—H3B110.7C8—N2—H2B110.2
C2—C3—H3B110.7C7—N2—H2B110.2
H3A—C3—H3B108.8H2A—N2—H2B108.5
C5—C4—C3105.7 (15)C1—O1—Hg1138.6 (10)
C5—C4—H4A110.6C1—O1—Hg299.7 (10)
C3—C4—H4A110.6Hg1—O1—Hg2121.1 (4)
C5—C4—H4B110.6C6—O3—Hg3100.3 (10)
C3—C4—H4B110.6C6—O3—Hg2146.2 (12)
H4A—C4—H4B108.7Hg3—O3—Hg2113.5 (5)
C4—C5—N1103.2 (14)Cl2—Hg1—Cl1168.25 (18)
C4—C5—H5A111.1Cl2—Hg1—O194.4 (3)
N1—C5—H5A111.1Cl1—Hg1—O194.2 (3)
C4—C5—H5B111.1Cl3—Hg2—Cl4166.19 (18)
N1—C5—H5B111.1Cl3—Hg2—O193.9 (3)
H5A—C5—H5B109.1Cl4—Hg2—O194.9 (3)
O3—C6—O4127.5 (16)Cl3—Hg2—O390.6 (4)
O3—C6—C7114.5 (14)Cl4—Hg2—O394.2 (4)
O4—C6—C7117.8 (14)O1—Hg2—O3119.6 (4)
N2—C7—C10104.9 (12)Cl6—Hg3—Cl5163.51 (18)
N2—C7—C6109.9 (11)Cl6—Hg3—O3103.4 (4)
C10—C7—C6113.7 (14)Cl5—Hg3—O393.0 (4)
N2—C7—H7109.4Cl8—Hg4—Cl7178.5 (3)
C10—C7—H7109.4Cl3—Hg2—O295.4 (3)
C6—C7—H7109.4Cl4—Hg2—O298.4 (3)
N2—C8—C9103.9 (17)O1—Hg2—O247.2 (3)
N2—C8—H8A111.0O3—Hg2—O272.4 (3)
C9—C8—H8A111.0C1—O2—Hg286.4 (10)
N2—C8—H8B111.0C6—O4—Hg382.7 (10)
C9—C8—H8B111.0C6—O4—Hg4158.6 (11)
H8A—C8—H8B109.0Hg3—O4—Hg4106.4 (3)
C8—C9—C10103.5 (19)Cl6—Hg3—O495.2 (3)
C8—C9—H9A111.1Cl5—Hg3—O495.6 (3)
C10—C9—H9A111.1O3—Hg3—O447.7 (3)
C8—C9—H9B111.1Cl8—Hg4—O495.3 (3)
C10—C9—H9B111.1Cl7—Hg4—O486.2 (3)
H9A—C9—H9B109.0Cl2—Hg1—Cl3i98.1 (2)
C9—C10—C7104.8 (16)Cl1—Hg1—Cl3i89.20 (19)
C9—C10—H10A110.8O1—Hg1—Cl3i94.7 (3)
C7—C10—H10A110.8
O2—C1—C2—N110 (2)Hg1—O1—Hg2—O3178.1 (4)
O1—C1—C2—N1173.3 (15)C6—O3—Hg2—Cl385 (3)
O2—C1—C2—C3107.0 (18)Hg3—O3—Hg2—Cl391.5 (6)
O1—C1—C2—C370 (2)C6—O3—Hg2—Cl482 (3)
C1—C2—C3—C4133.0 (16)Hg3—O3—Hg2—Cl4101.5 (6)
N1—C2—C3—C414.8 (19)C6—O3—Hg2—O1179 (2)
C2—C3—C4—C534 (2)Hg3—O3—Hg2—O13.4 (10)
C3—C4—C5—N138 (2)C6—O3—Hg3—Cl691.9 (12)
O3—C6—C7—N2177.7 (15)Hg2—O3—Hg3—Cl685.9 (6)
O4—C6—C7—N21.7 (19)C6—O3—Hg3—Cl587.8 (13)
O3—C6—C7—C1061 (2)Hg2—O3—Hg3—Cl594.5 (6)
O4—C6—C7—C10115.4 (17)O1—C1—O2—Hg218.1 (18)
N2—C8—C9—C1039 (2)C2—C1—O2—Hg2158.7 (15)
C8—C9—C10—C729 (2)O3—C6—O4—Hg313.3 (19)
N2—C7—C10—C98 (2)C7—C6—O4—Hg3162.1 (13)
C6—C7—C10—C9128.2 (17)O3—C6—O4—Hg4130 (3)
C1—C2—N1—C5114.4 (14)C7—C6—O4—Hg445 (4)
C3—C2—N1—C57.6 (16)C1—O1—Hg2—O29.8 (10)
C4—C5—N1—C228.4 (18)Hg1—O1—Hg2—O2177.2 (8)
C9—C8—N2—C735 (2)C6—O3—Hg2—O2180 (3)
C10—C7—N2—C816.4 (17)Hg3—O3—Hg2—O24.0 (6)
C6—C7—N2—C8106.1 (15)C1—O2—Hg2—Cl380.4 (10)
O2—C1—O1—Hg1168.6 (12)C1—O2—Hg2—Cl499.0 (10)
C2—C1—O1—Hg115 (3)C1—O2—Hg2—O110.0 (10)
O2—C1—O1—Hg221 (2)C1—O2—Hg2—O3169.2 (11)
C2—C1—O1—Hg2156.4 (12)C6—O3—Hg3—O47.1 (11)
O4—C6—O3—Hg315 (2)Hg2—O3—Hg3—O4170.7 (9)
C7—C6—O3—Hg3160.2 (10)C6—O4—Hg3—Cl6110.2 (9)
O4—C6—O3—Hg2161.1 (15)Hg4—O4—Hg3—Cl689.7 (4)
C7—C6—O3—Hg223 (3)C6—O4—Hg3—Cl582.2 (9)
C1—O1—Hg1—Cl281.9 (18)Hg4—O4—Hg3—Cl577.9 (3)
Hg2—O1—Hg1—Cl287.5 (6)C6—O4—Hg3—O36.7 (10)
C1—O1—Hg1—Cl1106.1 (18)Hg4—O4—Hg3—O3166.9 (7)
Hg2—O1—Hg1—Cl184.4 (6)C6—O4—Hg4—Cl825 (3)
C1—O1—Hg2—Cl383.9 (11)Hg3—O4—Hg4—Cl887.9 (4)
Hg1—O1—Hg2—Cl389.1 (6)C6—O4—Hg4—Cl7155 (3)
C1—O1—Hg2—Cl4106.7 (11)Hg3—O4—Hg4—Cl792.1 (3)
Hg1—O1—Hg2—Cl480.4 (5)C1—O1—Hg1—Cl3i16.5 (18)
C1—O1—Hg2—O39.0 (14)Hg2—O1—Hg1—Cl3i174.0 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl7i0.902.633.282 (14)130
N1—H1B···Cl6i0.902.403.290 (16)167
N2—H2A···Cl4ii0.902.403.267 (15)163
N2—H2B···Cl5ii0.902.603.234 (15)128
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Hg4Cl8(C5H9NO2)2]
Mr1316.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2742 (4), 9.4472 (5), 10.4767 (6)
α, β, γ (°)108.621 (3), 107.260 (2), 97.353 (2)
V3)631.51 (6)
Z1
Radiation typeMo Kα
µ (mm1)25.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.082, 0.188
No. of measured, independent and
observed [I > 2σ(I)] reflections
10896, 3956, 3773
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.03
No. of reflections3956
No. of parameters255
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 2.51
Absolute structureFlack (1983), 1736 Friedel pairs
Absolute structure parameter0.057 (16)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
O4—Hg42.888 (10)Cl2—Hg12.276 (6)
O4—Hg32.828 (11)Cl3—Hg22.323 (6)
O2—Hg22.869 (13)Cl4—Hg22.337 (6)
O1—Hg12.564 (11)Cl5—Hg32.316 (6)
O1—Hg22.566 (12)Cl6—Hg32.304 (6)
O3—Hg32.486 (13)Cl7—Hg42.300 (6)
O3—Hg22.634 (12)Cl8—Hg42.255 (7)
Cl1—Hg12.326 (6)Hg1—Cl3i3.009 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl7i0.902.633.282 (14)130
N1—H1B···Cl6i0.902.403.290 (16)167
N2—H2A···Cl4ii0.902.403.267 (15)163
N2—H2B···Cl5ii0.902.603.234 (15)128
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr K. Chinnakali, Department of Physics, Anna University, Chennai, for useful discussions and suggestions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhsan, M. Q., Malik, K. M. A. & Haider, S. Z. (1996). J. Banglad. Acad. Sci. 20, 175.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954–1956.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJiang, M. H. & Fang, Q. (1999). Adv. Mater. 11, 1147–1151.  CrossRef CAS Google Scholar
First citationKurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813.  CrossRef CAS Web of Science Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38.  CrossRef CAS Web of Science Google Scholar
First citationMcL Mathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599–604.  CSD CrossRef IUCr Journals Google Scholar
First citationNockemann, P. & Meyer, G. (2002). Acta Cryst. E58, i68–i69.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPadmanabhan, S., Suresh, S. & Vijayan, M. (1995). Acta Cryst. C51, 2098–2100.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002a). Acta Cryst. E58, o74–o76.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002b). Acta Cryst. E58, o862–o864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156–1158.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTedmann, O. M., Zavalij, P. Y., Madan, S. K. & Oliver, S. R. J. (2004). Acta Cryst. E60, m1706–m1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.  CSD CrossRef CAS Web of Science Google Scholar
First citationYukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.  CrossRef CAS Web of Science Google Scholar
First citationYukawa, Y., Yasukawa, N., Inomata, Y. & Takeuchi, T. (1985). Bull. Chem. Soc. Jpn, 58, 1591–1592.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1048-m1049
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds