metal-organic compounds
Redetermination of poly[μ-chlorido-heptachlorido-μ3-L-proline-μ2-L-proline-tetramercury(II)]
aCrystal Growth Centre, Anna University, Chennai 600025, India, and bDepartment of Physics, Presidency College, Chennai 600005, India
*Correspondence e-mail: rjvel@yahoo.com
The 4Cl8(C5H9NO2)2]n, consists of four HgCl2 units and two L-proline ligands in the zwitterionic form. In each HgCl2 unit, the HgII ion is strongly bonded to two Cl atoms, and the HgII ions in two of the HgCl2 units are chelated by O atoms of two L-proline ligands, with one strong and one weak Hg—O bond. In the HgCl2 and L-proline units are linked to form an extended chain along the a axis. The chain structure is further stabilized by N—H⋯Cl hydrogen bonds, and the chains are arranged in layers parallel to the ab plane. The structure of the title compound was originally determined by Ehsan, Malik & Haider [(1996). J. Banglad. Acad. Sci. 20, 175] but no three-dimensional coordinates are available.
of the title compound, [HgRelated literature
For related literature, see: Janczak & Luger (1997); Jiang & Fang (1999); Kurtz & Perry (1968); Long (1995); McL Mathieson & Welsh (1952); Nockemann & Meyer (2002); Padmanabhan et al. (1995); Pandiarajan et al. (2002a,b); Schaffers & Keszler (1993); Subha Nandhini et al. (2001); Tedmann et al. (2004); Yukawa et al. (1982, 1983, 1985); Ehsan et al. (1996).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S160053680802196X/lh2640sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680802196X/lh2640Isup2.hkl
The title compound was crystallized at room temperature by slow evaporation of an aqueous solution of L-proline and mercury(II) chloride in a stoichimetric ratio of 1:2.
The large anisotropic displacement parameters of atoms C3, C8 and C9 suggested disorder in five-membered rings. But attempts to refine the structure with a disorder model did not improve these parameters. Hence, during the final cycles of
the Uij components of atoms C3, C8 and C9 were restrained to approximate isotropic behaviour. The unresolved disorder resulted in poor precision on C—C bond lengths. H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N—H = 0.90 Å and C—H = 0.97 or 0.98 Å and Uiso(H) = 1.2Ueq(C,N).Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Atom Cl3A is generated by the symmetry operation (1+ x, y, z). Dashed bonds indicate weak interactions. | |
Fig. 2. Part of an extended chain running along the a axis. Dashed bonds indicate weak interactions. | |
Fig. 3. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.` |
[Hg4Cl8(C5H9NO2)2] | Z = 1 |
Mr = 1316.23 | F(000) = 580 |
Triclinic, P1 | Dx = 3.461 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2742 (4) Å | Cell parameters from 5619 reflections |
b = 9.4472 (5) Å | θ = 2.4–35.5° |
c = 10.4767 (6) Å | µ = 25.10 mm−1 |
α = 108.621 (3)° | T = 293 K |
β = 107.260 (2)° | Plate, pale brown |
γ = 97.353 (2)° | 0.20 × 0.10 × 0.10 mm |
V = 631.51 (6) Å3 |
Bruker Kappa APEXII area-detector diffractometer | 3956 independent reflections |
Radiation source: fine-focus sealed tube | 3773 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω and ϕ scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (Blessing, 1995) | h = −6→8 |
Tmin = 0.082, Tmax = 0.188 | k = −11→11 |
10896 measured reflections | l = −12→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0781P)2 + 1.0577P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 1.75 e Å−3 |
3956 reflections | Δρmin = −2.51 e Å−3 |
255 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
21 restraints | Extinction coefficient: 0.0066 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1736 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.057 (16) |
[Hg4Cl8(C5H9NO2)2] | γ = 97.353 (2)° |
Mr = 1316.23 | V = 631.51 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.2742 (4) Å | Mo Kα radiation |
b = 9.4472 (5) Å | µ = 25.10 mm−1 |
c = 10.4767 (6) Å | T = 293 K |
α = 108.621 (3)° | 0.20 × 0.10 × 0.10 mm |
β = 107.260 (2)° |
Bruker Kappa APEXII area-detector diffractometer | 3956 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 3773 reflections with I > 2σ(I) |
Tmin = 0.082, Tmax = 0.188 | Rint = 0.044 |
10896 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.111 | Δρmax = 1.75 e Å−3 |
S = 1.03 | Δρmin = −2.51 e Å−3 |
3956 reflections | Absolute structure: Flack (1983), 1736 Friedel pairs |
255 parameters | Absolute structure parameter: 0.057 (16) |
21 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.899 (3) | 0.4306 (18) | 0.7785 (18) | 0.028 (4) | |
C2 | 0.969 (2) | 0.3323 (15) | 0.6707 (14) | 0.029 (3) | |
H2 | 1.1092 | 0.3762 | 0.6931 | 0.034* | |
C3 | 0.849 (3) | 0.307 (2) | 0.515 (2) | 0.061 (5) | |
H3A | 0.7262 | 0.3395 | 0.5091 | 0.073* | |
H3B | 0.9246 | 0.3647 | 0.4779 | 0.073* | |
C4 | 0.805 (3) | 0.135 (2) | 0.4312 (19) | 0.053 (5) | |
H4A | 0.6851 | 0.1011 | 0.3467 | 0.063* | |
H4B | 0.9145 | 0.1099 | 0.4004 | 0.063* | |
C5 | 0.782 (3) | 0.063 (2) | 0.529 (2) | 0.054 (5) | |
H5A | 0.8072 | −0.0391 | 0.5014 | 0.065* | |
H5B | 0.6496 | 0.0542 | 0.5329 | 0.065* | |
C6 | 0.330 (2) | 0.4234 (17) | 1.0096 (17) | 0.029 (4) | |
C7 | 0.286 (2) | 0.5707 (15) | 1.1024 (14) | 0.031 (3) | |
H7 | 0.2394 | 0.6301 | 1.0431 | 0.037* | |
C8 | 0.224 (3) | 0.559 (3) | 1.308 (2) | 0.066 (5) | |
H8A | 0.2775 | 0.4742 | 1.3230 | 0.079* | |
H8B | 0.1311 | 0.5775 | 1.3584 | 0.079* | |
C9 | 0.385 (4) | 0.700 (3) | 1.359 (3) | 0.074 (7) | |
H9A | 0.4888 | 0.7116 | 1.4480 | 0.089* | |
H9B | 0.3341 | 0.7919 | 1.3756 | 0.089* | |
C10 | 0.463 (3) | 0.673 (2) | 1.237 (2) | 0.059 (5) | |
H10A | 0.5709 | 0.6227 | 1.2514 | 0.070* | |
H10B | 0.5103 | 0.7701 | 1.2293 | 0.070* | |
N1 | 0.942 (2) | 0.1748 (13) | 0.6775 (12) | 0.040 (3) | |
H1A | 0.9010 | 0.1744 | 0.7504 | 0.048* | |
H1B | 1.0575 | 0.1460 | 0.6915 | 0.048* | |
N2 | 0.1290 (17) | 0.5265 (14) | 1.1579 (15) | 0.042 (3) | |
H2A | 0.0369 | 0.5809 | 1.1448 | 0.050* | |
H2B | 0.0685 | 0.4256 | 1.1103 | 0.050* | |
O1 | 0.9293 (18) | 0.5718 (13) | 0.7961 (14) | 0.044 (3) | |
O2 | 0.8094 (19) | 0.3750 (13) | 0.8405 (12) | 0.050 (3) | |
O3 | 0.457 (2) | 0.4477 (15) | 0.9648 (17) | 0.055 (4) | |
O4 | 0.2390 (17) | 0.2970 (11) | 0.9976 (12) | 0.039 (3) | |
Cl1 | 1.3639 (8) | 0.8860 (6) | 0.9691 (6) | 0.0403 (14) | |
Cl2 | 0.9186 (9) | 0.6904 (7) | 0.5046 (7) | 0.0569 (15) | |
Cl3 | 0.4113 (9) | 0.5596 (8) | 0.6683 (7) | 0.0463 (14) | |
Cl4 | 0.8766 (8) | 0.7849 (6) | 1.1323 (6) | 0.0388 (11) | |
Cl5 | 0.7759 (8) | 0.2678 (7) | 1.1413 (6) | 0.0430 (13) | |
Cl6 | 0.3481 (8) | 0.0587 (7) | 0.6721 (6) | 0.0504 (14) | |
Cl7 | −0.1508 (9) | −0.0454 (6) | 0.8492 (6) | 0.0408 (14) | |
Cl8 | 0.2824 (12) | 0.1691 (10) | 1.3145 (8) | 0.076 (2) | |
Hg1 | 1.13721 (7) | 0.76197 (5) | 0.73403 (5) | 0.0368 (2) | |
Hg2 | 0.65755 (7) | 0.64526 (5) | 0.89544 (5) | 0.0337 (2) | |
Hg3 | 0.54733 (7) | 0.19563 (5) | 0.91009 (5) | 0.0357 (2) | |
Hg4 | 0.07001 (8) | 0.06525 (6) | 1.08346 (6) | 0.0426 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (9) | 0.035 (8) | 0.017 (8) | 0.013 (6) | 0.017 (7) | 0.004 (7) |
C2 | 0.038 (8) | 0.030 (7) | 0.021 (7) | 0.013 (6) | 0.019 (6) | 0.005 (6) |
C3 | 0.083 (9) | 0.056 (8) | 0.047 (8) | 0.015 (6) | 0.012 (6) | 0.034 (7) |
C4 | 0.077 (14) | 0.041 (9) | 0.014 (8) | 0.002 (8) | 0.007 (8) | −0.010 (7) |
C5 | 0.072 (13) | 0.036 (9) | 0.044 (11) | −0.002 (8) | 0.022 (10) | 0.006 (8) |
C6 | 0.024 (9) | 0.034 (8) | 0.025 (8) | 0.002 (6) | 0.007 (7) | 0.012 (7) |
C7 | 0.045 (9) | 0.033 (7) | 0.012 (6) | 0.008 (6) | 0.014 (6) | 0.002 (6) |
C8 | 0.059 (8) | 0.086 (9) | 0.060 (9) | 0.010 (6) | 0.039 (7) | 0.024 (7) |
C9 | 0.071 (10) | 0.079 (10) | 0.066 (10) | 0.005 (7) | 0.022 (8) | 0.025 (8) |
C10 | 0.036 (10) | 0.072 (12) | 0.044 (11) | −0.014 (8) | 0.006 (8) | 0.010 (9) |
N1 | 0.073 (9) | 0.030 (6) | 0.022 (6) | 0.017 (6) | 0.017 (6) | 0.012 (5) |
N2 | 0.025 (6) | 0.040 (6) | 0.052 (9) | 0.002 (5) | 0.009 (6) | 0.015 (6) |
O1 | 0.055 (8) | 0.034 (6) | 0.052 (8) | 0.012 (5) | 0.030 (6) | 0.016 (6) |
O2 | 0.067 (8) | 0.052 (7) | 0.028 (6) | −0.007 (6) | 0.029 (6) | 0.008 (5) |
O3 | 0.078 (9) | 0.044 (7) | 0.066 (10) | 0.022 (6) | 0.054 (8) | 0.024 (7) |
O4 | 0.052 (7) | 0.026 (5) | 0.032 (6) | 0.000 (5) | 0.018 (5) | 0.004 (5) |
Cl1 | 0.034 (3) | 0.041 (3) | 0.040 (3) | 0.006 (2) | 0.008 (2) | 0.013 (2) |
Cl2 | 0.054 (3) | 0.057 (3) | 0.049 (3) | 0.021 (3) | 0.003 (2) | 0.017 (3) |
Cl3 | 0.039 (3) | 0.058 (3) | 0.038 (3) | 0.012 (2) | 0.010 (2) | 0.017 (2) |
Cl4 | 0.044 (3) | 0.034 (2) | 0.032 (3) | 0.005 (2) | 0.012 (2) | 0.008 (2) |
Cl5 | 0.040 (3) | 0.055 (3) | 0.026 (3) | 0.002 (2) | 0.009 (2) | 0.011 (2) |
Cl6 | 0.045 (3) | 0.059 (3) | 0.034 (3) | 0.008 (2) | 0.007 (2) | 0.008 (3) |
Cl7 | 0.051 (3) | 0.037 (3) | 0.036 (3) | 0.012 (2) | 0.016 (2) | 0.015 (2) |
Cl8 | 0.063 (4) | 0.093 (5) | 0.038 (3) | 0.005 (3) | −0.004 (3) | 0.006 (3) |
Hg1 | 0.0368 (4) | 0.0374 (4) | 0.0338 (4) | 0.0094 (3) | 0.0100 (3) | 0.0127 (3) |
Hg2 | 0.0300 (4) | 0.0369 (4) | 0.0325 (4) | 0.0074 (3) | 0.0099 (3) | 0.0125 (3) |
Hg3 | 0.0298 (4) | 0.0387 (4) | 0.0323 (4) | 0.0050 (3) | 0.0082 (3) | 0.0097 (3) |
Hg4 | 0.0438 (5) | 0.0425 (4) | 0.0349 (5) | 0.0072 (3) | 0.0095 (3) | 0.0119 (4) |
C1—O2 | 1.224 (19) | C9—C10 | 1.51 (3) |
C1—O1 | 1.267 (19) | C9—H9A | 0.97 |
C1—C2 | 1.480 (19) | C9—H9B | 0.97 |
C2—N1 | 1.502 (16) | C10—H10A | 0.97 |
C2—C3 | 1.53 (2) | C10—H10B | 0.97 |
C2—H2 | 0.98 | N1—H1A | 0.90 |
C3—C4 | 1.52 (2) | N1—H1B | 0.90 |
C3—H3A | 0.97 | N2—H2A | 0.90 |
C3—H3B | 0.97 | N2—H2B | 0.90 |
C4—C5 | 1.44 (2) | O4—Hg4 | 2.888 (10) |
C4—H4A | 0.97 | O4—Hg3 | 2.828 (11) |
C4—H4B | 0.97 | O2—Hg2 | 2.869 (13) |
C5—N1 | 1.57 (2) | O1—Hg1 | 2.564 (11) |
C5—H5A | 0.97 | O1—Hg2 | 2.566 (12) |
C5—H5B | 0.97 | O3—Hg3 | 2.486 (13) |
C6—O3 | 1.18 (2) | O3—Hg2 | 2.634 (12) |
C6—O4 | 1.236 (17) | Cl1—Hg1 | 2.326 (6) |
C6—C7 | 1.56 (2) | Cl2—Hg1 | 2.276 (6) |
C7—N2 | 1.495 (18) | Cl3—Hg2 | 2.323 (6) |
C7—C10 | 1.52 (2) | Cl4—Hg2 | 2.337 (6) |
C7—H7 | 0.98 | Cl5—Hg3 | 2.316 (6) |
C8—N2 | 1.43 (2) | Cl6—Hg3 | 2.304 (6) |
C8—C9 | 1.49 (3) | Cl7—Hg4 | 2.300 (6) |
C8—H8A | 0.97 | Cl8—Hg4 | 2.255 (7) |
C8—H8B | 0.97 | Hg1—Cl3i | 3.009 (6) |
O2—C1—O1 | 123.4 (15) | C9—C10—H10B | 110.8 |
O2—C1—C2 | 120.9 (14) | C7—C10—H10B | 110.8 |
O1—C1—C2 | 115.6 (13) | H10A—C10—H10B | 108.9 |
C1—C2—N1 | 108.0 (11) | C2—N1—C5 | 106.4 (11) |
C1—C2—C3 | 113.8 (14) | C2—N1—H1A | 110.5 |
N1—C2—C3 | 105.4 (12) | C5—N1—H1A | 110.5 |
C1—C2—H2 | 109.8 | C2—N1—H1B | 110.5 |
N1—C2—H2 | 109.8 | C5—N1—H1B | 110.5 |
C3—C2—H2 | 109.8 | H1A—N1—H1B | 108.6 |
C4—C3—C2 | 105.3 (13) | C8—N2—C7 | 107.8 (12) |
C4—C3—H3A | 110.7 | C8—N2—H2A | 110.2 |
C2—C3—H3A | 110.7 | C7—N2—H2A | 110.2 |
C4—C3—H3B | 110.7 | C8—N2—H2B | 110.2 |
C2—C3—H3B | 110.7 | C7—N2—H2B | 110.2 |
H3A—C3—H3B | 108.8 | H2A—N2—H2B | 108.5 |
C5—C4—C3 | 105.7 (15) | C1—O1—Hg1 | 138.6 (10) |
C5—C4—H4A | 110.6 | C1—O1—Hg2 | 99.7 (10) |
C3—C4—H4A | 110.6 | Hg1—O1—Hg2 | 121.1 (4) |
C5—C4—H4B | 110.6 | C6—O3—Hg3 | 100.3 (10) |
C3—C4—H4B | 110.6 | C6—O3—Hg2 | 146.2 (12) |
H4A—C4—H4B | 108.7 | Hg3—O3—Hg2 | 113.5 (5) |
C4—C5—N1 | 103.2 (14) | Cl2—Hg1—Cl1 | 168.25 (18) |
C4—C5—H5A | 111.1 | Cl2—Hg1—O1 | 94.4 (3) |
N1—C5—H5A | 111.1 | Cl1—Hg1—O1 | 94.2 (3) |
C4—C5—H5B | 111.1 | Cl3—Hg2—Cl4 | 166.19 (18) |
N1—C5—H5B | 111.1 | Cl3—Hg2—O1 | 93.9 (3) |
H5A—C5—H5B | 109.1 | Cl4—Hg2—O1 | 94.9 (3) |
O3—C6—O4 | 127.5 (16) | Cl3—Hg2—O3 | 90.6 (4) |
O3—C6—C7 | 114.5 (14) | Cl4—Hg2—O3 | 94.2 (4) |
O4—C6—C7 | 117.8 (14) | O1—Hg2—O3 | 119.6 (4) |
N2—C7—C10 | 104.9 (12) | Cl6—Hg3—Cl5 | 163.51 (18) |
N2—C7—C6 | 109.9 (11) | Cl6—Hg3—O3 | 103.4 (4) |
C10—C7—C6 | 113.7 (14) | Cl5—Hg3—O3 | 93.0 (4) |
N2—C7—H7 | 109.4 | Cl8—Hg4—Cl7 | 178.5 (3) |
C10—C7—H7 | 109.4 | Cl3—Hg2—O2 | 95.4 (3) |
C6—C7—H7 | 109.4 | Cl4—Hg2—O2 | 98.4 (3) |
N2—C8—C9 | 103.9 (17) | O1—Hg2—O2 | 47.2 (3) |
N2—C8—H8A | 111.0 | O3—Hg2—O2 | 72.4 (3) |
C9—C8—H8A | 111.0 | C1—O2—Hg2 | 86.4 (10) |
N2—C8—H8B | 111.0 | C6—O4—Hg3 | 82.7 (10) |
C9—C8—H8B | 111.0 | C6—O4—Hg4 | 158.6 (11) |
H8A—C8—H8B | 109.0 | Hg3—O4—Hg4 | 106.4 (3) |
C8—C9—C10 | 103.5 (19) | Cl6—Hg3—O4 | 95.2 (3) |
C8—C9—H9A | 111.1 | Cl5—Hg3—O4 | 95.6 (3) |
C10—C9—H9A | 111.1 | O3—Hg3—O4 | 47.7 (3) |
C8—C9—H9B | 111.1 | Cl8—Hg4—O4 | 95.3 (3) |
C10—C9—H9B | 111.1 | Cl7—Hg4—O4 | 86.2 (3) |
H9A—C9—H9B | 109.0 | Cl2—Hg1—Cl3i | 98.1 (2) |
C9—C10—C7 | 104.8 (16) | Cl1—Hg1—Cl3i | 89.20 (19) |
C9—C10—H10A | 110.8 | O1—Hg1—Cl3i | 94.7 (3) |
C7—C10—H10A | 110.8 | ||
O2—C1—C2—N1 | −10 (2) | Hg1—O1—Hg2—O3 | −178.1 (4) |
O1—C1—C2—N1 | 173.3 (15) | C6—O3—Hg2—Cl3 | −85 (3) |
O2—C1—C2—C3 | 107.0 (18) | Hg3—O3—Hg2—Cl3 | 91.5 (6) |
O1—C1—C2—C3 | −70 (2) | C6—O3—Hg2—Cl4 | 82 (3) |
C1—C2—C3—C4 | −133.0 (16) | Hg3—O3—Hg2—Cl4 | −101.5 (6) |
N1—C2—C3—C4 | −14.8 (19) | C6—O3—Hg2—O1 | −179 (2) |
C2—C3—C4—C5 | 34 (2) | Hg3—O3—Hg2—O1 | −3.4 (10) |
C3—C4—C5—N1 | −38 (2) | C6—O3—Hg3—Cl6 | 91.9 (12) |
O3—C6—C7—N2 | −177.7 (15) | Hg2—O3—Hg3—Cl6 | −85.9 (6) |
O4—C6—C7—N2 | −1.7 (19) | C6—O3—Hg3—Cl5 | −87.8 (13) |
O3—C6—C7—C10 | −61 (2) | Hg2—O3—Hg3—Cl5 | 94.5 (6) |
O4—C6—C7—C10 | 115.4 (17) | O1—C1—O2—Hg2 | 18.1 (18) |
N2—C8—C9—C10 | −39 (2) | C2—C1—O2—Hg2 | −158.7 (15) |
C8—C9—C10—C7 | 29 (2) | O3—C6—O4—Hg3 | 13.3 (19) |
N2—C7—C10—C9 | −8 (2) | C7—C6—O4—Hg3 | −162.1 (13) |
C6—C7—C10—C9 | −128.2 (17) | O3—C6—O4—Hg4 | 130 (3) |
C1—C2—N1—C5 | 114.4 (14) | C7—C6—O4—Hg4 | −45 (4) |
C3—C2—N1—C5 | −7.6 (16) | C1—O1—Hg2—O2 | 9.8 (10) |
C4—C5—N1—C2 | 28.4 (18) | Hg1—O1—Hg2—O2 | −177.2 (8) |
C9—C8—N2—C7 | 35 (2) | C6—O3—Hg2—O2 | 180 (3) |
C10—C7—N2—C8 | −16.4 (17) | Hg3—O3—Hg2—O2 | −4.0 (6) |
C6—C7—N2—C8 | 106.1 (15) | C1—O2—Hg2—Cl3 | 80.4 (10) |
O2—C1—O1—Hg1 | 168.6 (12) | C1—O2—Hg2—Cl4 | −99.0 (10) |
C2—C1—O1—Hg1 | −15 (3) | C1—O2—Hg2—O1 | −10.0 (10) |
O2—C1—O1—Hg2 | −21 (2) | C1—O2—Hg2—O3 | 169.2 (11) |
C2—C1—O1—Hg2 | 156.4 (12) | C6—O3—Hg3—O4 | 7.1 (11) |
O4—C6—O3—Hg3 | −15 (2) | Hg2—O3—Hg3—O4 | −170.7 (9) |
C7—C6—O3—Hg3 | 160.2 (10) | C6—O4—Hg3—Cl6 | −110.2 (9) |
O4—C6—O3—Hg2 | 161.1 (15) | Hg4—O4—Hg3—Cl6 | 89.7 (4) |
C7—C6—O3—Hg2 | −23 (3) | C6—O4—Hg3—Cl5 | 82.2 (9) |
C1—O1—Hg1—Cl2 | 81.9 (18) | Hg4—O4—Hg3—Cl5 | −77.9 (3) |
Hg2—O1—Hg1—Cl2 | −87.5 (6) | C6—O4—Hg3—O3 | −6.7 (10) |
C1—O1—Hg1—Cl1 | −106.1 (18) | Hg4—O4—Hg3—O3 | −166.9 (7) |
Hg2—O1—Hg1—Cl1 | 84.4 (6) | C6—O4—Hg4—Cl8 | −25 (3) |
C1—O1—Hg2—Cl3 | −83.9 (11) | Hg3—O4—Hg4—Cl8 | 87.9 (4) |
Hg1—O1—Hg2—Cl3 | 89.1 (6) | C6—O4—Hg4—Cl7 | 155 (3) |
C1—O1—Hg2—Cl4 | 106.7 (11) | Hg3—O4—Hg4—Cl7 | −92.1 (3) |
Hg1—O1—Hg2—Cl4 | −80.4 (5) | C1—O1—Hg1—Cl3i | −16.5 (18) |
C1—O1—Hg2—O3 | 9.0 (14) | Hg2—O1—Hg1—Cl3i | 174.0 (5) |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl7i | 0.90 | 2.63 | 3.282 (14) | 130 |
N1—H1B···Cl6i | 0.90 | 2.40 | 3.290 (16) | 167 |
N2—H2A···Cl4ii | 0.90 | 2.40 | 3.267 (15) | 163 |
N2—H2B···Cl5ii | 0.90 | 2.60 | 3.234 (15) | 128 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Hg4Cl8(C5H9NO2)2] |
Mr | 1316.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2742 (4), 9.4472 (5), 10.4767 (6) |
α, β, γ (°) | 108.621 (3), 107.260 (2), 97.353 (2) |
V (Å3) | 631.51 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 25.10 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker Kappa APEXII area-detector diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.082, 0.188 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10896, 3956, 3773 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.111, 1.03 |
No. of reflections | 3956 |
No. of parameters | 255 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.75, −2.51 |
Absolute structure | Flack (1983), 1736 Friedel pairs |
Absolute structure parameter | 0.057 (16) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
O4—Hg4 | 2.888 (10) | Cl2—Hg1 | 2.276 (6) |
O4—Hg3 | 2.828 (11) | Cl3—Hg2 | 2.323 (6) |
O2—Hg2 | 2.869 (13) | Cl4—Hg2 | 2.337 (6) |
O1—Hg1 | 2.564 (11) | Cl5—Hg3 | 2.316 (6) |
O1—Hg2 | 2.566 (12) | Cl6—Hg3 | 2.304 (6) |
O3—Hg3 | 2.486 (13) | Cl7—Hg4 | 2.300 (6) |
O3—Hg2 | 2.634 (12) | Cl8—Hg4 | 2.255 (7) |
Cl1—Hg1 | 2.326 (6) | Hg1—Cl3i | 3.009 (6) |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl7i | 0.90 | 2.63 | 3.282 (14) | 130 |
N1—H1B···Cl6i | 0.90 | 2.40 | 3.290 (16) | 167 |
N2—H2A···Cl4ii | 0.90 | 2.40 | 3.267 (15) | 163 |
N2—H2B···Cl5ii | 0.90 | 2.60 | 3.234 (15) | 128 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
The authors thank Dr K. Chinnakali, Department of Physics, Anna University, Chennai, for useful discussions and suggestions.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ehsan, M. Q., Malik, K. M. A. & Haider, S. Z. (1996). J. Banglad. Acad. Sci. 20, 175. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Janczak, J. & Luger, P. (1997). Acta Cryst. C53, 1954–1956. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jiang, M. H. & Fang, Q. (1999). Adv. Mater. 11, 1147–1151. CrossRef CAS Google Scholar
Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813. CrossRef CAS Web of Science Google Scholar
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38. CrossRef CAS Web of Science Google Scholar
McL Mathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599–604. CSD CrossRef IUCr Journals Google Scholar
Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, i68–i69. Web of Science CrossRef IUCr Journals Google Scholar
Padmanabhan, S., Suresh, S. & Vijayan, M. (1995). Acta Cryst. C51, 2098–2100. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002a). Acta Cryst. E58, o74–o76. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002b). Acta Cryst. E58, o862–o864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156–1158. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 423–424. CSD CrossRef CAS IUCr Journals Google Scholar
Tedmann, O. M., Zavalij, P. Y., Madan, S. K. & Oliver, S. R. J. (2004). Acta Cryst. E60, m1706–m1707. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128. CSD CrossRef CAS Web of Science Google Scholar
Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137. CrossRef CAS Web of Science Google Scholar
Yukawa, Y., Yasukawa, N., Inomata, Y. & Takeuchi, T. (1985). Bull. Chem. Soc. Jpn, 58, 1591–1592. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last few years, organic non-linear optical (NLO) crystals have attracted much interest due to their superior properties over inorganic NLO materials, such as higher susceptibility, faster response and the capability of designing components on the molecular level. However, unlike inorganic NLO crystals, they have not come into wide use, owing to drawbacks such as the difficulty of growing large size perfect single crystals and poor physicochemical stability. Under these circumstances, crystals of metal-organic materials with NLO effects have been developed which are expected not only to retain high NLO effects, but also to minimize some of the shortcomings of pure organic crystals; in other words, they have the advantages of both organic and inorganic crystals in terms of their physicochemical properties. This approach has resulted in their practical use in frequency-doubling of laser radiation (Long, 1995; Jiang & Fang, 1999). The crystal structure of L-proline monohydrate (Janczak & Luger, 1997), DL-proline monohydrate (Padmanabhan et al., 1995), L-prolinium tartrate (Subha Nandhini et al.,2001), bis (L-proline) hydrogen (1+) perchlorate (Pandiarajan et al.,2002a), bis (L-proline) hydrogen nitrate (Pandiarajan et al., 2002b), L-alanine cadmium chloride (Schaffers & Keszler, 1993), dichloro(4-hydroxy-L-proline)cadmium(II) (Yukawa et al., 1982), dichloro(L-proline)cadmium(II) hydrate (Yukawa et al., 1983), dichlorobis(L-proline)Zinc(II) (Yukawa et al., 1985) and bis-DL-prolinatocopper(II)dihydrate (McL Mathieson & Welsh, 1952) have been reported. The present study reports the crystal structure of the title salt, a complex of L-proline with mercury chloride. The second harmonic generation (SHG) effect of the crystals was measured by the powder SHG technique (Kurtz & Perry, 1968) and was found to be 2.5 times that of potassium dihydrogen phosphate crystals.
The asymmetric unit consists of four HgCl2 units and two L-proline zwitterions (Fig.1). In each HgCl2 units the metal atom is strongly bonded to two Cl atoms, with Hg—Cl distances in the range 2.255 (7) Å–2.337 (6) Å. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002) and (2,2-bipyridine N,N'-dioxide-k2O,O')dichloro-mercury(II) (Tedmann et al., 2004). Metal atoms in two HgCl2 units (Hg2 and Hg3) are also chelated by carboxylate O atoms of two L-proline ligands, with one strong and one weak Hg—O bonds [Hg2—O1 2.566 (12) Å, Hg2—O2 2.869 (13) Å, Hg3—O3 2.486 (13) Å and Hg3—O4 2.828 (13) Å]. These distances are comparable with those observed for ammonium mercury (II) dichloride nitrate (Nockemann & Meyer, 2002). The two HgCl2L units (L is L-proline) are linked via Hg2—O3 bond [Hg2—O3 2.634 (12) Å]. Of the remaining two HgCl2units, one unit (Hg1) is bonded to atom O1 of the adjacent L-proline ligand and atom Cl3 in the adjacent unit cell [Hg1···O1 2.564 (11) Å and Hg1—Cl3(1 + x,y,z) 3.009 (7) Å], and the other unit is weakly bonded with atom O4 [Hg4—O4 2.888 (12) Å]. The geometry around metal atoms Hg1, Hg2 and Hg3 is nearly linear as a result of constraints imposed by chelation [Cl2—Hg1—Cl1 168.25 (18)°, Cl3—Hg2—Cl4 166.19 (18)° and Cl6—Hg3—Cl5 163.51 (18)°] whereas that around atom Hg4 is linear [Cl8—Hg4—Cl7 178.5 (3)°].
In the crystal structure, the HgCl2 and L-proline units are linked to form an extended chain along the a axis (Fig.2). The chain structure is further strengthened by N—H···Cl hydrogen bonds (Table 2). The polymeric chains are arranged into layers parallel to the ab plane (Fig.3). The structure of the title compound was originally determined by Ehsan et al. (1996) but no three-dimensional coordinates are available.