metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­bis­(2,4-di­chloro-6-formyl­phenolato-κ2O,O′)(N,N-di­methyl­formamide-κO)nickel(II)

aDepartment of Chemistry, Shangrao Normal University, Shangrao, Jiangxi 334001, People's Republic of China, and bKey Laboratory of Nonferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 15 June 2008; accepted 21 July 2008; online 26 July 2008)

In the title compound, [Ni(C7H3Cl2O2)2(C3H7NO)(H2O)], the NiII ion is coordinated by four O atoms from two bidentate 2,4-dichloro-6-formyl­phenolate ligands, one O atom from a water ligand and one O atom from a dimethyl­formamide ligand in a slightly distorted octa­hedral environment. In the crystal structure, centrosymmetric dimers are formed though O—H⋯O and O—H⋯Cl hydrogen bonds; ππ stacking inter­actions, with a centroid–centroid distance of 3.796 (2) Å, are also found.

Related literature

For related literature, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Mathews & Manohar (1991[Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621-1624.]); Zaman et al. (2004[Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]); Zhang et al. (2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]); Zordan et al. (2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H3Cl2O2)2(C3H7NO)(H2O)]

  • Mr = 529.81

  • Monoclinic, P 21 /c

  • a = 10.404 (2) Å

  • b = 9.6130 (19) Å

  • c = 22.161 (4) Å

  • β = 92.44 (3)°

  • V = 2214.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 (2) K

  • 0.48 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.555, Tmax = 0.642

  • 10765 measured reflections

  • 3969 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.07

  • 3969 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O3 2.041 (2)
Ni1—O1 2.041 (2)
Ni1—O2 2.061 (3)
Ni1—O4 2.070 (3)
Ni1—O5 2.148 (3)
Ni1—O6 2.150 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O1i 0.82 1.91 2.714 (3) 168
O6—H6B⋯O3i 0.83 (4) 2.17 (4) 2.850 (4) 139 (4)
O6—H6B⋯Cl3i 0.84 (4) 2.67 (4) 3.374 (3) 143 (4)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of chloro substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), contains the dichloride ligand 3,5-Dichloro-2-hydroxy-benzaldehyde, with two Cl atoms accessible at the periphery of each ligand.

In the molecular structure of (I), the NiII ion is coordinated by four O atoms from two bidentate 3,5-Dichloro-2-hydroxy-benzaldehyde ligands, one O atom from a H2O ligand and one O atom from a N,N'-dimethylformamide ligand forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure O—H···O and O—H···Cl hydrogen bonds (see Table 2) result in the formation of a centrosymmetric dimer (Fig. 2). Within the dimer, there are ππ stacking interactions between the C1–C6 and C8–C13(-x, 2-y, 1-z) rings with centroid···centroid distance of 3.796 (2) Å and interplanar distance of 3.59 Å giving an offset angle of 3.5°. In the crystal structure, dimers are further linked through weak intermolecular C—H···O hydrogen bonds (Fig. 3) (C5—H5A···O4ii, 3.454 Å, symmetry code: (ii) 1 + x, 2 - y, 1 + z).

Related literature top

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews & Manohar (1991); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005).

Experimental top

A ethanol solution (30 ml) containing 3,5-Dichloro-2-hydroxy-benzaldehyde (0.191 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of Nickel chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h. The green solid compound was separated out and dissolved by N,N-Dimethylformamide, then the green solution was filtrated. After 10 days, green crystals were produced from the filtrate (yield: 65.3%, based on Ni).

Refinement top

H atoms were positioned geometrically and were treated as riding atoms, with C—H distances of 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C), and with and O—H distance of 0.82 Å and Uiso(H) = 1.5Ueq(O) for H6A. Atom H6B was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. The dimer of (I), Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. 1-D chain of (I), Dashed lines indicate hydrogen bonds.
cis-Aquabis(2,4-dichloro-6-formylphenolato-κ2O,O')(N,N-dimethylformamide- κO)nickel(II) top
Crystal data top
[Ni(C7H3Cl2O2)2(C3H7NO)(H2O)]F(000) = 1072
Mr = 529.81Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3969 reflections
a = 10.404 (2) Åθ = 1.8–25.2°
b = 9.6130 (19) ŵ = 1.39 mm1
c = 22.161 (4) ÅT = 293 K
β = 92.44 (3)°Block, green
V = 2214.4 (8) Å30.48 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3969 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 1.8°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.555, Tmax = 0.642l = 2326
10765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0455P)2 + 2.189P]
where P = (Fo2 + 2Fc2)/3
3969 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C7H3Cl2O2)2(C3H7NO)(H2O)]V = 2214.4 (8) Å3
Mr = 529.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.404 (2) ŵ = 1.39 mm1
b = 9.6130 (19) ÅT = 293 K
c = 22.161 (4) Å0.48 × 0.40 × 0.35 mm
β = 92.44 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3969 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3010 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.642Rint = 0.036
10765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.59 e Å3
3969 reflectionsΔρmin = 0.37 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.20449 (4)0.95403 (5)0.46317 (2)0.03298 (15)
Cl30.19959 (10)0.74563 (12)0.37793 (5)0.0551 (3)
Cl10.04788 (11)0.62415 (13)0.61561 (5)0.0620 (3)
Cl40.17775 (12)1.10954 (17)0.18744 (5)0.0754 (4)
Cl20.48052 (13)0.70149 (19)0.75310 (6)0.0915 (5)
O20.3577 (2)1.0446 (3)0.51032 (11)0.0395 (6)
O10.1544 (2)0.8520 (3)0.53947 (10)0.0363 (6)
O40.2662 (2)1.0551 (3)0.38720 (11)0.0439 (7)
O60.1041 (2)1.1430 (3)0.48293 (13)0.0384 (6)
H6A0.02721.13320.47430.058*
O30.0510 (2)0.8740 (3)0.41437 (10)0.0374 (6)
O50.3235 (2)0.7792 (3)0.44247 (12)0.0437 (7)
C10.2302 (3)0.8212 (4)0.58538 (15)0.0335 (8)
C70.4025 (3)1.0013 (4)0.55949 (17)0.0393 (9)
H7A0.47751.04440.57420.047*
C80.0074 (3)0.9226 (4)0.36312 (16)0.0335 (8)
C90.1159 (3)0.8770 (4)0.33844 (16)0.0381 (9)
C50.4263 (4)0.8523 (5)0.64989 (17)0.0485 (11)
H5A0.50370.89810.65840.058*
C110.1049 (4)1.0351 (5)0.25254 (17)0.0491 (11)
C40.3865 (4)0.7480 (5)0.68905 (18)0.0536 (12)
C130.0725 (4)1.0237 (4)0.32556 (16)0.0405 (9)
C120.0161 (4)1.0781 (5)0.27125 (17)0.0491 (11)
H12A0.06041.14220.24860.059*
C60.3515 (3)0.8893 (4)0.59776 (16)0.0363 (9)
C30.2688 (4)0.6781 (5)0.67818 (19)0.0531 (11)
H3A0.24230.60930.70440.064*
C140.2000 (4)1.0767 (4)0.34105 (18)0.0456 (10)
H14A0.23601.13410.31250.055*
C100.1696 (4)0.9316 (4)0.28593 (17)0.0450 (10)
H10A0.25010.90050.27190.054*
C20.1946 (4)0.7137 (4)0.62829 (18)0.0424 (9)
N10.3665 (4)0.5364 (4)0.43658 (16)0.0520 (9)
C150.2951 (4)0.6490 (5)0.45053 (17)0.0454 (10)
H15A0.21690.63100.46780.054*
C160.4864 (5)0.5594 (6)0.4064 (3)0.0785 (16)
H16A0.50390.65740.40490.118*
H16B0.47870.52300.36610.118*
H16C0.55540.51310.42840.118*
C170.3215 (7)0.3854 (5)0.4433 (3)0.102 (2)
H17A0.24170.38400.46350.152*
H17B0.38520.33390.46660.152*
H17C0.30930.34400.40410.152*
H6B0.098 (4)1.144 (5)0.5204 (19)0.053 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0240 (2)0.0404 (3)0.0343 (3)0.0019 (2)0.00076 (18)0.0032 (2)
Cl30.0426 (6)0.0615 (7)0.0608 (7)0.0183 (5)0.0015 (5)0.0011 (5)
Cl10.0498 (6)0.0627 (8)0.0729 (8)0.0140 (6)0.0032 (5)0.0246 (6)
Cl40.0634 (8)0.1139 (12)0.0473 (7)0.0148 (7)0.0164 (6)0.0139 (7)
Cl20.0638 (8)0.1517 (15)0.0571 (8)0.0273 (9)0.0192 (6)0.0263 (8)
O20.0269 (13)0.0485 (16)0.0427 (15)0.0026 (12)0.0017 (11)0.0023 (12)
O10.0250 (12)0.0498 (16)0.0338 (13)0.0039 (11)0.0017 (10)0.0079 (12)
O40.0331 (14)0.0597 (18)0.0389 (15)0.0096 (13)0.0006 (12)0.0086 (13)
O60.0254 (13)0.0477 (17)0.0420 (16)0.0006 (11)0.0006 (11)0.0018 (13)
O30.0291 (13)0.0466 (16)0.0362 (14)0.0065 (11)0.0026 (11)0.0037 (12)
O50.0376 (15)0.0380 (16)0.0558 (17)0.0015 (12)0.0049 (12)0.0017 (13)
C10.0301 (19)0.038 (2)0.0329 (19)0.0057 (16)0.0028 (15)0.0011 (16)
C70.0231 (17)0.049 (2)0.046 (2)0.0035 (17)0.0017 (16)0.0043 (19)
C80.0279 (18)0.038 (2)0.034 (2)0.0025 (16)0.0010 (15)0.0049 (16)
C90.033 (2)0.041 (2)0.040 (2)0.0006 (17)0.0021 (16)0.0042 (17)
C50.031 (2)0.071 (3)0.043 (2)0.010 (2)0.0048 (17)0.008 (2)
C110.042 (2)0.071 (3)0.033 (2)0.010 (2)0.0061 (17)0.002 (2)
C40.042 (2)0.082 (3)0.036 (2)0.018 (2)0.0031 (18)0.007 (2)
C130.033 (2)0.054 (3)0.035 (2)0.0012 (18)0.0016 (16)0.0016 (18)
C120.049 (2)0.059 (3)0.040 (2)0.001 (2)0.0009 (19)0.008 (2)
C60.0258 (18)0.047 (2)0.036 (2)0.0043 (16)0.0015 (15)0.0056 (17)
C30.045 (2)0.067 (3)0.047 (2)0.012 (2)0.004 (2)0.016 (2)
C140.043 (2)0.057 (3)0.038 (2)0.011 (2)0.0053 (18)0.0128 (19)
C100.031 (2)0.060 (3)0.044 (2)0.0008 (19)0.0034 (17)0.015 (2)
C20.038 (2)0.044 (2)0.045 (2)0.0038 (18)0.0032 (17)0.0064 (19)
N10.056 (2)0.041 (2)0.059 (2)0.0003 (17)0.0052 (18)0.0027 (17)
C150.040 (2)0.053 (3)0.043 (2)0.010 (2)0.0007 (18)0.003 (2)
C160.066 (3)0.075 (4)0.096 (4)0.020 (3)0.015 (3)0.009 (3)
C170.124 (6)0.037 (3)0.142 (6)0.015 (3)0.008 (5)0.001 (3)
Geometric parameters (Å, º) top
Ni1—O32.041 (2)C5—C41.400 (6)
Ni1—O12.041 (2)C5—C61.411 (5)
Ni1—O22.061 (3)C5—H5A0.9300
Ni1—O42.070 (3)C11—C121.372 (6)
Ni1—O52.148 (3)C11—C101.426 (6)
Ni1—O62.150 (3)C4—C31.408 (6)
Cl3—C91.784 (4)C13—C121.416 (5)
Cl1—C21.764 (4)C13—C141.448 (5)
Cl4—C111.754 (4)C12—H12A0.9300
Cl2—C41.748 (4)C3—C21.365 (5)
O2—C71.239 (4)C3—H3A0.9300
O1—C11.295 (4)C14—H14A0.9300
O4—C141.226 (4)C10—H10A0.9300
O6—H6A0.8200N1—C151.356 (5)
O6—H6B0.83 (4)N1—C161.456 (6)
O3—C81.292 (4)N1—C171.534 (6)
O5—C151.301 (5)C15—H15A0.9300
C1—C61.437 (5)C16—H16A0.9600
C1—C21.463 (5)C16—H16B0.9600
C7—C61.483 (5)C16—H16C0.9600
C7—H7A0.9300C17—H17A0.9600
C8—C91.441 (5)C17—H17B0.9600
C8—C131.465 (5)C17—H17C0.9600
C9—C101.374 (5)
O3—Ni1—O192.08 (10)C5—C4—Cl2121.1 (4)
O3—Ni1—O2177.03 (10)C3—C4—Cl2118.0 (3)
O1—Ni1—O290.12 (10)C12—C13—C14114.5 (4)
O3—Ni1—O490.51 (10)C12—C13—C8122.9 (3)
O1—Ni1—O4176.71 (10)C14—C13—C8122.7 (3)
O2—Ni1—O487.36 (10)C11—C12—C13119.2 (4)
O3—Ni1—O592.13 (10)C11—C12—H12A120.4
O1—Ni1—O588.33 (10)C13—C12—H12A120.4
O2—Ni1—O589.92 (10)C5—C6—C1119.4 (4)
O4—Ni1—O589.55 (11)C5—C6—C7116.9 (3)
O3—Ni1—O692.88 (10)C1—C6—C7123.7 (3)
O1—Ni1—O695.38 (10)C2—C3—C4118.5 (4)
O2—Ni1—O684.93 (10)C2—C3—H3A120.8
O4—Ni1—O686.51 (11)C4—C3—H3A120.8
O5—Ni1—O6173.65 (10)O4—C14—C13127.9 (4)
C7—O2—Ni1123.9 (2)O4—C14—H14A116.0
C1—O1—Ni1126.3 (2)C13—C14—H14A116.0
C14—O4—Ni1125.1 (2)C9—C10—C11121.5 (4)
Ni1—O6—H6A109.5C9—C10—H10A119.3
Ni1—O6—H6B106 (3)C11—C10—H10A119.3
H6A—O6—H6B96.5C3—C2—C1123.6 (4)
C8—O3—Ni1124.5 (2)C3—C2—Cl1117.6 (3)
C15—O5—Ni1126.0 (2)C1—C2—Cl1118.9 (3)
O1—C1—C6123.1 (3)C15—N1—C16118.1 (4)
O1—C1—C2120.6 (3)C15—N1—C17124.0 (4)
C6—C1—C2116.3 (3)C16—N1—C17117.4 (4)
O2—C7—C6128.0 (3)O5—C15—N1127.4 (4)
O2—C7—H7A116.0O5—C15—H15A116.3
C6—C7—H7A116.0N1—C15—H15A116.3
O3—C8—C9119.8 (3)N1—C16—H16A109.5
O3—C8—C13125.9 (3)N1—C16—H16B109.5
C9—C8—C13114.4 (3)H16A—C16—H16B109.5
C10—C9—C8121.9 (4)N1—C16—H16C109.5
C10—C9—Cl3119.8 (3)H16A—C16—H16C109.5
C8—C9—Cl3118.3 (3)H16B—C16—H16C109.5
C4—C5—C6121.4 (4)N1—C17—H17A109.5
C4—C5—H5A119.3N1—C17—H17B109.5
C6—C5—H5A119.3H17A—C17—H17B109.5
C12—C11—C10120.1 (4)N1—C17—H17C109.5
C12—C11—Cl4119.0 (3)H17A—C17—H17C109.5
C10—C11—Cl4120.9 (3)H17B—C17—H17C109.5
C5—C4—C3120.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.821.912.714 (3)168
O6—H6B···O3i0.83 (4)2.17 (4)2.850 (4)139 (4)
O6—H6B···Cl3i0.84 (4)2.67 (4)3.374 (3)143 (4)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H3Cl2O2)2(C3H7NO)(H2O)]
Mr529.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.404 (2), 9.6130 (19), 22.161 (4)
β (°) 92.44 (3)
V3)2214.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.48 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.555, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
10765, 3969, 3010
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.07
No. of reflections3969
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.37

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O32.041 (2)Ni1—O42.070 (3)
Ni1—O12.041 (2)Ni1—O52.148 (3)
Ni1—O22.061 (3)Ni1—O62.150 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.821.912.714 (3)168.3
O6—H6B···O3i0.83 (4)2.17 (4)2.850 (4)139 (4)
O6—H6B···Cl3i0.84 (4)2.67 (4)3.374 (3)143 (4)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Guangxi Province, China (grant No. 0832085).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationMathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds