Related literature
For a related structure, see: Kinzhibalo et al. (2002).
Experimental
Data collection
Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.709, Tmax = 0.860 5328 measured reflections 2551 independent reflections 2083 reflections with I > 2σ(I) Rint = 0.027
|
Cu1—O2 | 2.017 (2) | Cu1—O1 | 2.045 (2) | Cu1—O3 | 2.053 (2) | | O2—Cu1—O2i | 180 | O2—Cu1—O1 | 87.24 (9) | O2—Cu1—O1i | 92.76 (9) | O1—Cu1—O1i | 180 | O2—Cu1—O3i | 90.30 (10) | O1—Cu1—O3i | 86.64 (9) | O2—Cu1—O3 | 89.70 (10) | O1—Cu1—O3 | 93.36 (9) | O3i—Cu1—O3 | 180 | Symmetry code: (i) -x+1, -y, -z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1—H1W⋯N3 | 0.82 | 2.04 | 2.814 (3) | 158 | O1—H2W⋯O5ii | 0.83 | 1.94 | 2.734 (3) | 162 | O2—H3W⋯N2iii | 0.83 | 1.99 | 2.800 (3) | 167 | O2—H4W⋯O4iii | 0.83 | 1.89 | 2.700 (3) | 165 | O3—H5W⋯Cl1 | 0.82 | 2.54 | 3.190 (2) | 137 | O3—H6W⋯N1iv | 0.82 | 2.00 | 2.805 (3) | 165 | O4—H7W⋯Cl1 | 0.83 | 2.35 | 3.170 (3) | 168 | O4—H8W⋯N4v | 0.84 | 2.00 | 2.829 (4) | 174 | O5—H9W⋯Cl1 | 0.83 | 2.43 | 3.245 (3) | 169 | O5—H10W⋯Cl1vi | 0.83 | 2.37 | 3.200 (3) | 175 | Symmetry codes: (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x, -y+1, -z+1; (vi) -x, -y, -z+1. | |
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
All reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) was dissolved in 50 ml EtOH/H2O (V:V = 1:1) solution, then the resultant solution was added in 10 ml double-distilled water containing CuCl2.2H2O (0.171 g, 1 mmol), The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals were obtained in a yield up to 48.6%.
H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C-H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Hexaaquacopper(II) dichloride bis(hexamethylenetetramine) tetrahydrate
top Crystal data top [Cu(H2O)6]Cl2·2C6H12N4·4H2O | Z = 1 |
Mr = 594.99 | F(000) = 315 |
Triclinic, P1 | Dx = 1.430 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.321 (3) Å | Cell parameters from 1415 reflections |
b = 9.3923 (16) Å | θ = 2.5–22.9° |
c = 9.4261 (16) Å | µ = 1.04 mm−1 |
α = 119.523 (2)° | T = 291 K |
β = 94.153 (3)° | Block, blue |
γ = 101.065 (3)° | 0.36 × 0.29 × 0.15 mm |
V = 691.1 (3) Å3 | |
Data collection top Bruker SMART CCD diffractometer | 2551 independent reflections |
Radiation source: fine-focus sealed tube | 2083 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 0 pixels mm-1 | θmax = 25.5°, θmin = 2.5° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −11→11 |
Tmin = 0.709, Tmax = 0.860 | l = −11→11 |
5328 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4567P] P = (Fo2 + 2Fc2)/3 |
2551 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
Crystal data top [Cu(H2O)6]Cl2·2C6H12N4·4H2O | γ = 101.065 (3)° |
Mr = 594.99 | V = 691.1 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.321 (3) Å | Mo Kα radiation |
b = 9.3923 (16) Å | µ = 1.04 mm−1 |
c = 9.4261 (16) Å | T = 291 K |
α = 119.523 (2)° | 0.36 × 0.29 × 0.15 mm |
β = 94.153 (3)° | |
Data collection top Bruker SMART CCD diffractometer | 2551 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2083 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 0.860 | Rint = 0.027 |
5328 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.30 e Å−3 |
2551 reflections | Δρmin = −0.51 e Å−3 |
151 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.5000 | 0.0000 | 0.0000 | 0.03048 (18) | |
Cl1 | 0.18946 (11) | 0.17433 (12) | 0.43516 (12) | 0.0544 (3) | |
O1 | 0.3831 (2) | 0.1341 (3) | −0.0575 (3) | 0.0410 (6) | |
H1W | 0.3885 | 0.2251 | 0.0267 | 0.061* | |
H2W | 0.3032 | 0.0955 | −0.1237 | 0.061* | |
O2 | 0.6183 (3) | 0.2239 (3) | 0.1983 (3) | 0.0458 (6) | |
H3W | 0.6168 | 0.2522 | 0.2960 | 0.069* | |
H4W | 0.6825 | 0.2950 | 0.1926 | 0.069* | |
O3 | 0.3576 (3) | −0.0289 (3) | 0.1457 (3) | 0.0468 (6) | |
H5W | 0.3400 | 0.0621 | 0.2072 | 0.070* | |
H6W | 0.3653 | −0.0847 | 0.1901 | 0.070* | |
O4 | 0.1965 (3) | 0.5031 (3) | 0.7782 (3) | 0.0481 (6) | |
H7W | 0.2086 | 0.4204 | 0.6934 | 0.072* | |
H8W | 0.1057 | 0.4942 | 0.7787 | 0.072* | |
O5 | 0.1485 (3) | 0.0517 (4) | 0.7004 (4) | 0.0741 (9) | |
H9W | 0.1697 | 0.0946 | 0.6432 | 0.111* | |
H10W | 0.0599 | −0.0029 | 0.6717 | 0.111* | |
N1 | 0.3348 (3) | 0.7402 (3) | 0.2551 (3) | 0.0349 (6) | |
N2 | 0.3362 (3) | 0.6544 (3) | 0.4602 (3) | 0.0347 (6) | |
N3 | 0.3419 (3) | 0.4512 (3) | 0.1727 (3) | 0.0339 (6) | |
N4 | 0.1150 (3) | 0.5418 (3) | 0.2441 (3) | 0.0352 (6) | |
C1 | 0.3865 (4) | 0.7928 (4) | 0.4281 (4) | 0.0372 (7) | |
H1A | 0.3493 | 0.8884 | 0.5004 | 0.045* | |
H1B | 0.4945 | 0.8297 | 0.4544 | 0.045* | |
C2 | 0.3940 (4) | 0.5117 (4) | 0.3491 (4) | 0.0367 (7) | |
H2A | 0.3622 | 0.4193 | 0.3685 | 0.044* | |
H2B | 0.5021 | 0.5469 | 0.3747 | 0.044* | |
C3 | 0.1779 (4) | 0.4020 (4) | 0.1381 (4) | 0.0399 (8) | |
H3A | 0.1418 | 0.3631 | 0.0225 | 0.048* | |
H3B | 0.1433 | 0.3083 | 0.1550 | 0.048* | |
C4 | 0.1704 (4) | 0.6831 (4) | 0.2180 (4) | 0.0390 (8) | |
H4A | 0.1311 | 0.7774 | 0.2886 | 0.047* | |
H4B | 0.1342 | 0.6476 | 0.1034 | 0.047* | |
C5 | 0.3921 (4) | 0.5949 (4) | 0.1478 (4) | 0.0384 (8) | |
H5A | 0.5002 | 0.6301 | 0.1718 | 0.046* | |
H5B | 0.3584 | 0.5583 | 0.0324 | 0.046* | |
C6 | 0.1729 (4) | 0.5996 (4) | 0.4188 (4) | 0.0388 (8) | |
H6A | 0.1335 | 0.6931 | 0.4911 | 0.047* | |
H6B | 0.1386 | 0.5079 | 0.4386 | 0.047* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0393 (3) | 0.0273 (3) | 0.0255 (3) | 0.0104 (2) | 0.0087 (2) | 0.0133 (2) |
Cl1 | 0.0599 (6) | 0.0441 (5) | 0.0534 (6) | 0.0137 (5) | 0.0259 (5) | 0.0190 (5) |
O1 | 0.0505 (14) | 0.0335 (12) | 0.0335 (12) | 0.0193 (11) | 0.0002 (10) | 0.0117 (10) |
O2 | 0.0663 (16) | 0.0310 (12) | 0.0231 (11) | −0.0071 (11) | 0.0028 (11) | 0.0093 (10) |
O3 | 0.0699 (17) | 0.0442 (14) | 0.0551 (15) | 0.0328 (13) | 0.0383 (13) | 0.0372 (13) |
O4 | 0.0416 (14) | 0.0439 (14) | 0.0435 (14) | 0.0008 (11) | 0.0087 (11) | 0.0151 (12) |
O5 | 0.0623 (18) | 0.088 (2) | 0.070 (2) | 0.0023 (16) | −0.0133 (15) | 0.0494 (19) |
N1 | 0.0419 (16) | 0.0337 (15) | 0.0399 (15) | 0.0157 (13) | 0.0169 (12) | 0.0237 (13) |
N2 | 0.0422 (15) | 0.0331 (14) | 0.0248 (13) | 0.0026 (12) | 0.0077 (11) | 0.0143 (12) |
N3 | 0.0421 (15) | 0.0299 (14) | 0.0300 (14) | 0.0139 (12) | 0.0067 (12) | 0.0141 (12) |
N4 | 0.0353 (15) | 0.0330 (15) | 0.0333 (14) | 0.0089 (12) | 0.0074 (12) | 0.0141 (12) |
C1 | 0.0456 (19) | 0.0255 (16) | 0.0339 (17) | 0.0049 (14) | 0.0106 (15) | 0.0117 (14) |
C2 | 0.0448 (19) | 0.0355 (18) | 0.0335 (17) | 0.0093 (15) | 0.0032 (14) | 0.0214 (15) |
C3 | 0.0403 (19) | 0.0323 (18) | 0.0335 (18) | 0.0067 (15) | 0.0012 (15) | 0.0090 (15) |
C4 | 0.047 (2) | 0.0410 (19) | 0.0398 (18) | 0.0225 (16) | 0.0150 (15) | 0.0240 (16) |
C5 | 0.047 (2) | 0.046 (2) | 0.0327 (17) | 0.0224 (17) | 0.0174 (15) | 0.0240 (16) |
C6 | 0.048 (2) | 0.0343 (18) | 0.0359 (18) | 0.0082 (15) | 0.0176 (15) | 0.0190 (15) |
Geometric parameters (Å, º) top Cu1—O2 | 2.017 (2) | N2—C2 | 1.469 (4) |
Cu1—O2i | 2.017 (2) | N2—C1 | 1.475 (4) |
Cu1—O1 | 2.045 (2) | N3—C3 | 1.472 (4) |
Cu1—O1i | 2.045 (2) | N3—C2 | 1.473 (4) |
Cu1—O3i | 2.053 (2) | N3—C5 | 1.476 (4) |
Cu1—O3 | 2.053 (2) | N4—C3 | 1.467 (4) |
O1—H1W | 0.8200 | N4—C4 | 1.472 (4) |
O1—H2W | 0.8260 | N4—C6 | 1.474 (4) |
O2—H3W | 0.8254 | C1—H1A | 0.9700 |
O2—H4W | 0.8330 | C1—H1B | 0.9700 |
O3—H5W | 0.8200 | C2—H2A | 0.9700 |
O3—H6W | 0.8246 | C2—H2B | 0.9700 |
O4—H7W | 0.8304 | C3—H3A | 0.9700 |
O4—H8W | 0.8351 | C3—H3B | 0.9700 |
O5—H9W | 0.8312 | C4—H4A | 0.9700 |
O5—H10W | 0.8289 | C4—H4B | 0.9700 |
N1—C1 | 1.462 (4) | C5—H5A | 0.9700 |
N1—C5 | 1.473 (4) | C5—H5B | 0.9700 |
N1—C4 | 1.477 (4) | C6—H6A | 0.9700 |
N2—C6 | 1.466 (4) | C6—H6B | 0.9700 |
| | | |
O2—Cu1—O2i | 180 | C4—N4—C6 | 107.7 (2) |
O2—Cu1—O1 | 87.24 (9) | N1—C1—N2 | 111.9 (2) |
O2i—Cu1—O1 | 92.76 (9) | N1—C1—H1A | 109.2 |
O2—Cu1—O1i | 92.76 (9) | N2—C1—H1A | 109.2 |
O2i—Cu1—O1i | 87.24 (9) | N1—C1—H1B | 109.2 |
O1—Cu1—O1i | 180 | N2—C1—H1B | 109.2 |
O2—Cu1—O3i | 90.30 (10) | H1A—C1—H1B | 107.9 |
O2i—Cu1—O3i | 89.70 (10) | N2—C2—N3 | 112.0 (2) |
O1—Cu1—O3i | 86.64 (9) | N2—C2—H2A | 109.2 |
O1i—Cu1—O3i | 93.36 (9) | N3—C2—H2A | 109.2 |
O2—Cu1—O3 | 89.70 (10) | N2—C2—H2B | 109.2 |
O2i—Cu1—O3 | 90.30 (10) | N3—C2—H2B | 109.2 |
O1—Cu1—O3 | 93.36 (9) | H2A—C2—H2B | 107.9 |
O1i—Cu1—O3 | 86.64 (9) | N4—C3—N3 | 112.7 (3) |
O3i—Cu1—O3 | 180 | N4—C3—H3A | 109.1 |
Cu1—O1—H1W | 109.5 | N3—C3—H3A | 109.1 |
Cu1—O1—H2W | 126.7 | N4—C3—H3B | 109.1 |
H1W—O1—H2W | 113.2 | N3—C3—H3B | 109.1 |
Cu1—O2—H3W | 124.5 | H3A—C3—H3B | 107.8 |
Cu1—O2—H4W | 124.2 | N4—C4—N1 | 112.3 (2) |
H3W—O2—H4W | 110.9 | N4—C4—H4A | 109.2 |
Cu1—O3—H5W | 109.5 | N1—C4—H4A | 109.2 |
Cu1—O3—H6W | 123.5 | N4—C4—H4B | 109.2 |
H5W—O3—H6W | 113.5 | N1—C4—H4B | 109.2 |
H7W—O4—H8W | 110.2 | H4A—C4—H4B | 107.9 |
H9W—O5—H10W | 111.4 | N1—C5—N3 | 112.0 (2) |
C1—N1—C5 | 108.3 (2) | N1—C5—H5A | 109.2 |
C1—N1—C4 | 108.1 (2) | N3—C5—H5A | 109.2 |
C5—N1—C4 | 108.3 (3) | N1—C5—H5B | 109.2 |
C6—N2—C2 | 108.5 (2) | N3—C5—H5B | 109.2 |
C6—N2—C1 | 108.5 (2) | H5A—C5—H5B | 107.9 |
C2—N2—C1 | 108.0 (2) | N2—C6—N4 | 112.1 (2) |
C3—N3—C2 | 108.0 (3) | N2—C6—H6A | 109.2 |
C3—N3—C5 | 108.1 (2) | N4—C6—H6A | 109.2 |
C2—N3—C5 | 107.7 (2) | N2—C6—H6B | 109.2 |
C3—N4—C4 | 108.1 (3) | N4—C6—H6B | 109.2 |
C3—N4—C6 | 107.9 (2) | H6A—C6—H6B | 107.9 |
| | | |
C5—N1—C1—N2 | −58.7 (3) | C3—N4—C4—N1 | −57.9 (3) |
C4—N1—C1—N2 | 58.3 (3) | C6—N4—C4—N1 | 58.4 (3) |
C6—N2—C1—N1 | −58.5 (3) | C1—N1—C4—N4 | −58.8 (3) |
C2—N2—C1—N1 | 58.9 (3) | C5—N1—C4—N4 | 58.3 (3) |
C6—N2—C2—N3 | 58.4 (3) | C1—N1—C5—N3 | 58.7 (3) |
C1—N2—C2—N3 | −59.0 (3) | C4—N1—C5—N3 | −58.2 (3) |
C3—N3—C2—N2 | −57.7 (3) | C3—N3—C5—N1 | 58.0 (3) |
C5—N3—C2—N2 | 58.8 (3) | C2—N3—C5—N1 | −58.5 (3) |
C4—N4—C3—N3 | 58.1 (3) | C2—N2—C6—N4 | −58.6 (3) |
C6—N4—C3—N3 | −58.2 (3) | C1—N2—C6—N4 | 58.5 (3) |
C2—N3—C3—N4 | 58.1 (3) | C3—N4—C6—N2 | 58.2 (3) |
C5—N3—C3—N4 | −58.2 (3) | C4—N4—C6—N2 | −58.3 (3) |
Symmetry code: (i) −x+1, −y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N3 | 0.82 | 2.04 | 2.814 (3) | 158 |
O1—H2W···O5ii | 0.83 | 1.94 | 2.734 (3) | 162 |
O2—H3W···N2iii | 0.83 | 1.99 | 2.800 (3) | 167 |
O2—H4W···O4iii | 0.83 | 1.89 | 2.700 (3) | 165 |
O3—H5W···Cl1 | 0.82 | 2.54 | 3.190 (2) | 137 |
O3—H6W···N1iv | 0.82 | 2.00 | 2.805 (3) | 165 |
O4—H7W···Cl1 | 0.83 | 2.35 | 3.170 (3) | 168 |
O4—H8W···N4v | 0.84 | 2.00 | 2.829 (4) | 174 |
O5—H9W···Cl1 | 0.83 | 2.43 | 3.245 (3) | 169 |
O5—H10W···Cl1vi | 0.83 | 2.37 | 3.200 (3) | 175 |
Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Cu(H2O)6]Cl2·2C6H12N4·4H2O |
Mr | 594.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 9.321 (3), 9.3923 (16), 9.4261 (16) |
α, β, γ (°) | 119.523 (2), 94.153 (3), 101.065 (3) |
V (Å3) | 691.1 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.36 × 0.29 × 0.15 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.709, 0.860 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5328, 2551, 2083 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.06 |
No. of reflections | 2551 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.51 |
Selected geometric parameters (Å, º) topCu1—O2 | 2.017 (2) | Cu1—O3 | 2.053 (2) |
Cu1—O1 | 2.045 (2) | | |
| | | |
O2—Cu1—O2i | 180 | O1—Cu1—O3i | 86.64 (9) |
O2—Cu1—O1 | 87.24 (9) | O2—Cu1—O3 | 89.70 (10) |
O2—Cu1—O1i | 92.76 (9) | O1—Cu1—O3 | 93.36 (9) |
O1—Cu1—O1i | 180 | O3i—Cu1—O3 | 180 |
O2—Cu1—O3i | 90.30 (10) | | |
Symmetry code: (i) −x+1, −y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N3 | 0.82 | 2.04 | 2.814 (3) | 157.8 |
O1—H2W···O5ii | 0.83 | 1.94 | 2.734 (3) | 162.1 |
O2—H3W···N2iii | 0.83 | 1.99 | 2.800 (3) | 166.5 |
O2—H4W···O4iii | 0.83 | 1.89 | 2.700 (3) | 164.7 |
O3—H5W···Cl1 | 0.82 | 2.54 | 3.190 (2) | 136.7 |
O3—H6W···N1iv | 0.82 | 2.00 | 2.805 (3) | 165.0 |
O4—H7W···Cl1 | 0.83 | 2.35 | 3.170 (3) | 168.1 |
O4—H8W···N4v | 0.84 | 2.00 | 2.829 (4) | 174.4 |
O5—H9W···Cl1 | 0.83 | 2.43 | 3.245 (3) | 168.5 |
O5—H10W···Cl1vi | 0.83 | 2.37 | 3.200 (3) | 174.8 |
Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1. |
Acknowledgements
We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.
References
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kinzhibalo, V. V., Mys'kiv, M. G. & Davydov, V. N. (2002). Koord. Khim. 28, 927–928. CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The asymmetric unit and some symmetry related atoms are shown in Fig.1. The asymmetric unit consists of one half of hexaaqua CuII cation, one chloride anion, one uncoordinated neutral hexamethylenetetramine molecule and two molecules of water of crystallization. In the crystal structure, hydrogen bonding between [Cu(H2O)6]2+ cations and hexamethylenetetramine molecules, and those between [Cu(H2O)6]2+ cations and chloride ions are shown in Fig. 2 and Fig.3, respectively. A 16-membered ring formed by cations and hexamethylenetetramine moieties via the H-bonding interactions propagates along the c-axis. The chloride ion H-bonded with the uncoordinated water molecules gives rise to a number of anionic ring systems (Fig. 3). One of the hydrogen atoms of the uncoordinated water molecule connects the chloride ion and forms a 16-membered ring. The combonation of these anionic and cationic frameworks results in the formation of a three-dimensional network.