metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­copper(II) dichloride bis­­(hexa­methyl­ene­tetra­mine) tetra­hydrate

aDepartment of Chemistry, Zhou Kou Normal University, Zhou Kou 466001, People's Republic of China
*Correspondence e-mail: bookw@126.com

(Received 19 June 2008; accepted 7 July 2008; online 12 July 2008)

The title compound, [Cu(H2O)6]Cl2·2C6H12N4·4H2O, was prepared under mild hydro­thermal conditions. The asymmetric unit consists of one half of the [Cu(H2O)6]2+ cation, a hexa­methyl­enetetra­mine mol­ecule, two solvent water mol­ecules and a chloride ion. The formula unit is generated by crystallographic inversion symmetry. The Cu atom lies on a crystallographic inversion centre. It is in a slightly distorted octa­hedral coordination environment. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the components into a three-dimensional network.

Related literature

For a related structure, see: Kinzhibalo et al. (2002[Kinzhibalo, V. V., Mys'kiv, M. G. & Davydov, V. N. (2002). Koord. Khim. 28, 927-928.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(H2O)6]Cl2·2C6H12N4·4H2O

  • Mr = 594.99

  • Triclinic, [P \overline 1]

  • a = 9.321 (3) Å

  • b = 9.3923 (16) Å

  • c = 9.4261 (16) Å

  • α = 119.523 (2)°

  • β = 94.153 (3)°

  • γ = 101.065 (3)°

  • V = 691.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 291 (2) K

  • 0.36 × 0.29 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.860

  • 5328 measured reflections

  • 2551 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 2551 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 2.017 (2)
Cu1—O1 2.045 (2)
Cu1—O3 2.053 (2)
O2—Cu1—O2i 180
O2—Cu1—O1 87.24 (9)
O2—Cu1—O1i 92.76 (9)
O1—Cu1—O1i 180
O2—Cu1—O3i 90.30 (10)
O1—Cu1—O3i 86.64 (9)
O2—Cu1—O3 89.70 (10)
O1—Cu1—O3 93.36 (9)
O3i—Cu1—O3 180
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N3 0.82 2.04 2.814 (3) 158
O1—H2W⋯O5ii 0.83 1.94 2.734 (3) 162
O2—H3W⋯N2iii 0.83 1.99 2.800 (3) 167
O2—H4W⋯O4iii 0.83 1.89 2.700 (3) 165
O3—H5W⋯Cl1 0.82 2.54 3.190 (2) 137
O3—H6W⋯N1iv 0.82 2.00 2.805 (3) 165
O4—H7W⋯Cl1 0.83 2.35 3.170 (3) 168
O4—H8W⋯N4v 0.84 2.00 2.829 (4) 174
O5—H9W⋯Cl1 0.83 2.43 3.245 (3) 169
O5—H10W⋯Cl1vi 0.83 2.37 3.200 (3) 175
Symmetry codes: (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x, -y+1, -z+1; (vi) -x, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit and some symmetry related atoms are shown in Fig.1. The asymmetric unit consists of one half of hexaaqua CuII cation, one chloride anion, one uncoordinated neutral hexamethylenetetramine molecule and two molecules of water of crystallization. In the crystal structure, hydrogen bonding between [Cu(H2O)6]2+ cations and hexamethylenetetramine molecules, and those between [Cu(H2O)6]2+ cations and chloride ions are shown in Fig. 2 and Fig.3, respectively. A 16-membered ring formed by cations and hexamethylenetetramine moieties via the H-bonding interactions propagates along the c-axis. The chloride ion H-bonded with the uncoordinated water molecules gives rise to a number of anionic ring systems (Fig. 3). One of the hydrogen atoms of the uncoordinated water molecule connects the chloride ion and forms a 16-membered ring. The combonation of these anionic and cationic frameworks results in the formation of a three-dimensional network.

Related literature top

For a related structure, see: Kinzhibalo et al. (2002).

Experimental top

All reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) was dissolved in 50 ml EtOH/H2O (V:V = 1:1) solution, then the resultant solution was added in 10 ml double-distilled water containing CuCl2.2H2O (0.171 g, 1 mmol), The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals were obtained in a yield up to 48.6%.

Refinement top

H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C-H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and symmetry related atoms of the title compound with 30% probability ellipsoids [symmetry code: (A) -x+1, -y, -z].
[Figure 2] Fig. 2. Hydrogen bonding [dashed lines] in part of the crystal structure between [Cu(H2O)6]2+ cations, hexamethylenetetramine molecules and water molecules.
[Figure 3] Fig. 3. Hydrogen bonding [dashed lines] in part of the crystal structure between the [Cu(H2O)6]2+ cations, chloride anions and water molecules.
Hexaaquacopper(II) dichloride bis(hexamethylenetetramine) tetrahydrate top
Crystal data top
[Cu(H2O)6]Cl2·2C6H12N4·4H2OZ = 1
Mr = 594.99F(000) = 315
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.321 (3) ÅCell parameters from 1415 reflections
b = 9.3923 (16) Åθ = 2.5–22.9°
c = 9.4261 (16) ŵ = 1.04 mm1
α = 119.523 (2)°T = 291 K
β = 94.153 (3)°Block, blue
γ = 101.065 (3)°0.36 × 0.29 × 0.15 mm
V = 691.1 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.709, Tmax = 0.860l = 1111
5328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.4567P] P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(H2O)6]Cl2·2C6H12N4·4H2Oγ = 101.065 (3)°
Mr = 594.99V = 691.1 (3) Å3
Triclinic, P1Z = 1
a = 9.321 (3) ÅMo Kα radiation
b = 9.3923 (16) ŵ = 1.04 mm1
c = 9.4261 (16) ÅT = 291 K
α = 119.523 (2)°0.36 × 0.29 × 0.15 mm
β = 94.153 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2083 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.860Rint = 0.027
5328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
2551 reflectionsΔρmin = 0.51 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.03048 (18)
Cl10.18946 (11)0.17433 (12)0.43516 (12)0.0544 (3)
O10.3831 (2)0.1341 (3)0.0575 (3)0.0410 (6)
H1W0.38850.22510.02670.061*
H2W0.30320.09550.12370.061*
O20.6183 (3)0.2239 (3)0.1983 (3)0.0458 (6)
H3W0.61680.25220.29600.069*
H4W0.68250.29500.19260.069*
O30.3576 (3)0.0289 (3)0.1457 (3)0.0468 (6)
H5W0.34000.06210.20720.070*
H6W0.36530.08470.19010.070*
O40.1965 (3)0.5031 (3)0.7782 (3)0.0481 (6)
H7W0.20860.42040.69340.072*
H8W0.10570.49420.77870.072*
O50.1485 (3)0.0517 (4)0.7004 (4)0.0741 (9)
H9W0.16970.09460.64320.111*
H10W0.05990.00290.67170.111*
N10.3348 (3)0.7402 (3)0.2551 (3)0.0349 (6)
N20.3362 (3)0.6544 (3)0.4602 (3)0.0347 (6)
N30.3419 (3)0.4512 (3)0.1727 (3)0.0339 (6)
N40.1150 (3)0.5418 (3)0.2441 (3)0.0352 (6)
C10.3865 (4)0.7928 (4)0.4281 (4)0.0372 (7)
H1A0.34930.88840.50040.045*
H1B0.49450.82970.45440.045*
C20.3940 (4)0.5117 (4)0.3491 (4)0.0367 (7)
H2A0.36220.41930.36850.044*
H2B0.50210.54690.37470.044*
C30.1779 (4)0.4020 (4)0.1381 (4)0.0399 (8)
H3A0.14180.36310.02250.048*
H3B0.14330.30830.15500.048*
C40.1704 (4)0.6831 (4)0.2180 (4)0.0390 (8)
H4A0.13110.77740.28860.047*
H4B0.13420.64760.10340.047*
C50.3921 (4)0.5949 (4)0.1478 (4)0.0384 (8)
H5A0.50020.63010.17180.046*
H5B0.35840.55830.03240.046*
C60.1729 (4)0.5996 (4)0.4188 (4)0.0388 (8)
H6A0.13350.69310.49110.047*
H6B0.13860.50790.43860.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0393 (3)0.0273 (3)0.0255 (3)0.0104 (2)0.0087 (2)0.0133 (2)
Cl10.0599 (6)0.0441 (5)0.0534 (6)0.0137 (5)0.0259 (5)0.0190 (5)
O10.0505 (14)0.0335 (12)0.0335 (12)0.0193 (11)0.0002 (10)0.0117 (10)
O20.0663 (16)0.0310 (12)0.0231 (11)0.0071 (11)0.0028 (11)0.0093 (10)
O30.0699 (17)0.0442 (14)0.0551 (15)0.0328 (13)0.0383 (13)0.0372 (13)
O40.0416 (14)0.0439 (14)0.0435 (14)0.0008 (11)0.0087 (11)0.0151 (12)
O50.0623 (18)0.088 (2)0.070 (2)0.0023 (16)0.0133 (15)0.0494 (19)
N10.0419 (16)0.0337 (15)0.0399 (15)0.0157 (13)0.0169 (12)0.0237 (13)
N20.0422 (15)0.0331 (14)0.0248 (13)0.0026 (12)0.0077 (11)0.0143 (12)
N30.0421 (15)0.0299 (14)0.0300 (14)0.0139 (12)0.0067 (12)0.0141 (12)
N40.0353 (15)0.0330 (15)0.0333 (14)0.0089 (12)0.0074 (12)0.0141 (12)
C10.0456 (19)0.0255 (16)0.0339 (17)0.0049 (14)0.0106 (15)0.0117 (14)
C20.0448 (19)0.0355 (18)0.0335 (17)0.0093 (15)0.0032 (14)0.0214 (15)
C30.0403 (19)0.0323 (18)0.0335 (18)0.0067 (15)0.0012 (15)0.0090 (15)
C40.047 (2)0.0410 (19)0.0398 (18)0.0225 (16)0.0150 (15)0.0240 (16)
C50.047 (2)0.046 (2)0.0327 (17)0.0224 (17)0.0174 (15)0.0240 (16)
C60.048 (2)0.0343 (18)0.0359 (18)0.0082 (15)0.0176 (15)0.0190 (15)
Geometric parameters (Å, º) top
Cu1—O22.017 (2)N2—C21.469 (4)
Cu1—O2i2.017 (2)N2—C11.475 (4)
Cu1—O12.045 (2)N3—C31.472 (4)
Cu1—O1i2.045 (2)N3—C21.473 (4)
Cu1—O3i2.053 (2)N3—C51.476 (4)
Cu1—O32.053 (2)N4—C31.467 (4)
O1—H1W0.8200N4—C41.472 (4)
O1—H2W0.8260N4—C61.474 (4)
O2—H3W0.8254C1—H1A0.9700
O2—H4W0.8330C1—H1B0.9700
O3—H5W0.8200C2—H2A0.9700
O3—H6W0.8246C2—H2B0.9700
O4—H7W0.8304C3—H3A0.9700
O4—H8W0.8351C3—H3B0.9700
O5—H9W0.8312C4—H4A0.9700
O5—H10W0.8289C4—H4B0.9700
N1—C11.462 (4)C5—H5A0.9700
N1—C51.473 (4)C5—H5B0.9700
N1—C41.477 (4)C6—H6A0.9700
N2—C61.466 (4)C6—H6B0.9700
O2—Cu1—O2i180C4—N4—C6107.7 (2)
O2—Cu1—O187.24 (9)N1—C1—N2111.9 (2)
O2i—Cu1—O192.76 (9)N1—C1—H1A109.2
O2—Cu1—O1i92.76 (9)N2—C1—H1A109.2
O2i—Cu1—O1i87.24 (9)N1—C1—H1B109.2
O1—Cu1—O1i180N2—C1—H1B109.2
O2—Cu1—O3i90.30 (10)H1A—C1—H1B107.9
O2i—Cu1—O3i89.70 (10)N2—C2—N3112.0 (2)
O1—Cu1—O3i86.64 (9)N2—C2—H2A109.2
O1i—Cu1—O3i93.36 (9)N3—C2—H2A109.2
O2—Cu1—O389.70 (10)N2—C2—H2B109.2
O2i—Cu1—O390.30 (10)N3—C2—H2B109.2
O1—Cu1—O393.36 (9)H2A—C2—H2B107.9
O1i—Cu1—O386.64 (9)N4—C3—N3112.7 (3)
O3i—Cu1—O3180N4—C3—H3A109.1
Cu1—O1—H1W109.5N3—C3—H3A109.1
Cu1—O1—H2W126.7N4—C3—H3B109.1
H1W—O1—H2W113.2N3—C3—H3B109.1
Cu1—O2—H3W124.5H3A—C3—H3B107.8
Cu1—O2—H4W124.2N4—C4—N1112.3 (2)
H3W—O2—H4W110.9N4—C4—H4A109.2
Cu1—O3—H5W109.5N1—C4—H4A109.2
Cu1—O3—H6W123.5N4—C4—H4B109.2
H5W—O3—H6W113.5N1—C4—H4B109.2
H7W—O4—H8W110.2H4A—C4—H4B107.9
H9W—O5—H10W111.4N1—C5—N3112.0 (2)
C1—N1—C5108.3 (2)N1—C5—H5A109.2
C1—N1—C4108.1 (2)N3—C5—H5A109.2
C5—N1—C4108.3 (3)N1—C5—H5B109.2
C6—N2—C2108.5 (2)N3—C5—H5B109.2
C6—N2—C1108.5 (2)H5A—C5—H5B107.9
C2—N2—C1108.0 (2)N2—C6—N4112.1 (2)
C3—N3—C2108.0 (3)N2—C6—H6A109.2
C3—N3—C5108.1 (2)N4—C6—H6A109.2
C2—N3—C5107.7 (2)N2—C6—H6B109.2
C3—N4—C4108.1 (3)N4—C6—H6B109.2
C3—N4—C6107.9 (2)H6A—C6—H6B107.9
C5—N1—C1—N258.7 (3)C3—N4—C4—N157.9 (3)
C4—N1—C1—N258.3 (3)C6—N4—C4—N158.4 (3)
C6—N2—C1—N158.5 (3)C1—N1—C4—N458.8 (3)
C2—N2—C1—N158.9 (3)C5—N1—C4—N458.3 (3)
C6—N2—C2—N358.4 (3)C1—N1—C5—N358.7 (3)
C1—N2—C2—N359.0 (3)C4—N1—C5—N358.2 (3)
C3—N3—C2—N257.7 (3)C3—N3—C5—N158.0 (3)
C5—N3—C2—N258.8 (3)C2—N3—C5—N158.5 (3)
C4—N4—C3—N358.1 (3)C2—N2—C6—N458.6 (3)
C6—N4—C3—N358.2 (3)C1—N2—C6—N458.5 (3)
C2—N3—C3—N458.1 (3)C3—N4—C6—N258.2 (3)
C5—N3—C3—N458.2 (3)C4—N4—C6—N258.3 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N30.822.042.814 (3)158
O1—H2W···O5ii0.831.942.734 (3)162
O2—H3W···N2iii0.831.992.800 (3)167
O2—H4W···O4iii0.831.892.700 (3)165
O3—H5W···Cl10.822.543.190 (2)137
O3—H6W···N1iv0.822.002.805 (3)165
O4—H7W···Cl10.832.353.170 (3)168
O4—H8W···N4v0.842.002.829 (4)174
O5—H9W···Cl10.832.433.245 (3)169
O5—H10W···Cl1vi0.832.373.200 (3)175
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(H2O)6]Cl2·2C6H12N4·4H2O
Mr594.99
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.321 (3), 9.3923 (16), 9.4261 (16)
α, β, γ (°)119.523 (2), 94.153 (3), 101.065 (3)
V3)691.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.36 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
5328, 2551, 2083
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.06
No. of reflections2551
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.51

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O22.017 (2)Cu1—O32.053 (2)
Cu1—O12.045 (2)
O2—Cu1—O2i180O1—Cu1—O3i86.64 (9)
O2—Cu1—O187.24 (9)O2—Cu1—O389.70 (10)
O2—Cu1—O1i92.76 (9)O1—Cu1—O393.36 (9)
O1—Cu1—O1i180O3i—Cu1—O3180
O2—Cu1—O3i90.30 (10)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N30.822.042.814 (3)157.8
O1—H2W···O5ii0.831.942.734 (3)162.1
O2—H3W···N2iii0.831.992.800 (3)166.5
O2—H4W···O4iii0.831.892.700 (3)164.7
O3—H5W···Cl10.822.543.190 (2)136.7
O3—H6W···N1iv0.822.002.805 (3)165.0
O4—H7W···Cl10.832.353.170 (3)168.1
O4—H8W···N4v0.842.002.829 (4)174.4
O5—H9W···Cl10.832.433.245 (3)168.5
O5—H10W···Cl1vi0.832.373.200 (3)174.8
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKinzhibalo, V. V., Mys'kiv, M. G. & Davydov, V. N. (2002). Koord. Khim. 28, 927–928.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds