organic compounds
4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside
aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography Department, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: antony.fairbanks@chem.ox.ac.uk
The title compound, C21H26O10S, was synthesized in a single step from mannose pentaacetate. The molecular structure confirms the α configuration of the anomeric thioaryl substituent. Spectroscopic and melting-point data obtained for the title compound are in disagreement with those previously reported, indicating the previously reported synthesis [Durette & Shen (1980). Carbohydr. Res. 81, 261–274] to be erroneous. The is stabilized by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For related literature, see: Altomare et al. (1994); Cao et al. (1998); Cosier & Glazer (1986); Drouin et al. (2007); Durette & Shen (1980); France et al. (2004); Mootoo et al. (1988); Poh (1982); Prince (1982); Roy et al. (1992); Watkin (1994).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK and Hooft et al. (2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808019338/lh2646sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808019338/lh2646Isup2.hkl
1,2,3,4,6-Penta-O-acetyl-α,β-D-mannopyranoside (12.55 g, 32.20 mmol) and 4-methoxythiophenol (5 ml, 40.70 mmol) were suspended in anhydrous dichloromethane (240 ml) under an atmosphere of argon, and the mixture was cooled to 273K. Boron trifluoride diethyl etherate (38.6 ml, 304.60 mmol) was added dropwise, and the reaction mixture was stirred at 295K. After 22 h, t.l.c. (petroleum ether/ethyl acetate, 1:1) indicated the formation of a major product (Rf 1/2) and the complete consumption of the starting material (Rf 0.4; 1/2). The reaction was then quenched by the addition of triethylamine and the resulting mixture was partitioned between dichloromethane (240 ml) and water (240 ml). The organic extracts were washed with a saturated aqueous solution of sodium hydrogencarbonate (240 ml), a saturated aqueous solution of sodium chloride (240 ml), and were then dried over MgSO4, and concentrated in vacuo. The residue was purified by flash (petroleum ether/ethyl acetate, 6:4) to give the desired 4-methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside (13.31 g, 88%) which crystallized from cyclohexane as a white crystalline solid, m.p. 335-337K (cyclohexane); a sample suitable for X-ray analysis was then re-crystallized from a solution in pentane/ethyl acetate; [α]D20 +108 (c, 1.1 in CHCl3), [α]D21 +117 (c, 1.2 in CHCl3); 1H (400 MHz, C6D6) 1.57 (3H, s, CH3CO), 1.67 (3H, s, CH3CO), 1.69 (3H, s, CH3CO), 1.70 (3H, s, CH3CO), 3.28 (3H, s, OCH3), 4.17 (1H, dd, J5,6 2.5 Hz, J6,6' 12.5 Hz, H-6), 4.42 (1H, dd, J5,6' 5.5 Hz, J6,6' 12.5 Hz, H-6'), 4.65 (1H, ddd, J4,5 8.0 Hz, J5,6 2.5 Hz, J5,6' 5.5 Hz, H-5), 5.42 (1H, brs, CH), 5.70–5.80 (2 x 1H, m, 2 x CH), 5.87 (1H, brs, CH), 6.60 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH), 7.34 (2 x 1H, dd, J 9.0 Hz, J 0.5 Hz, 2ArH); δH (400 MHz, CDCl3) 2.02 (3H, s, CH3CO), 2.08 (2 x 3H, s, 2 x CH3CO), 2.15 (3H, s, CH3CO), 3.80 (3H, s, OCH3), 4.12 (1H, dd, J6,6' 12.0 Hz, J5,6 2.0 Hz, H-6), 4.31 (1H, dd, J6,6' 4.0 Hz, J5,6' 6.0 Hz, H-6'), 4.58 (1H, ddd, J5,6 2.0 Hz, J5,6' 6.0 Hz, J4,5 10.0 Hz, H-5), 5.31–5.34 (3 x 1H, m, H-1, 2 x CH), 5.50 (1H, brs, CH), 6.86 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH), 7.43 (2 x 1H, dd, J 9.0 Hz, J 1.5 Hz, ArH); δC (50 MHz, CDCl3) 20.8 (CH3CO), 20.9 (2 x CH3CO), 21.0 (CH3CO), 55.5 (CH3O), 62.7 (C-6), 66.6 (CH), 69.5 (2 x CH), 70.89 (CH), 86.7 (C-1), 114.9 (2 x ArCH), 122.7 (ArC), 135.2 (2 x ArCH), 160.3 (ArC), 169.9 (C?O), 169.9 (C?O), 170.1 (C?O), 170.7 (C?O); m/z (ESI) 529.37 ([M+NH4+CH3CN]+, 100%); (HMRS (ESI) Calcd. For C21H26NaO10S (M+NH4+) 493.1139. Found 493.1127).
A polycrystalline aggregate was divided to give a fragment having dimensions approximately 0.2 x 0.32 x 0.44 mm, which was mounted on a glass fibre using perfluoropolyether oil. The sample was cooled rapidly to 150 K in a stream of cold N2 using an Oxford Cryosystems Cryostream unit (Cosier and Glazer, 1986). Diffraction data were measured using an Bruker–Nonius KappaCCD diffractometer (graphite-monochromated Mo Kα radiation, λ = 0.71073 Å). Intensity data were processed using the DENZO-SMN package (Otwinowski and Minor, 1997).
Examination of the
of the intensity data showed the to be P212121 and the structure was solved using the direct-methods program SIR92 (Altomare et al., 1994), which located all ordered non-hydrogen atoms. Subsequent full-matrix least-squares was carried out using the CRYSTALS program suite (Betteridge et al., 2003). Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. The relatively large thermal parameters of some of the acetate carbon and carbonyl oxygen atoms (Figure 1) suggest that there may be unresolved disorder of these groups. Attempts to model this did not lead to any improvement in the agreement with the X-ray data and were abandoned.Refinement of the Flack x parameter (Flack, 1983) gave a value of -0.063 (63) and examination of the Bijvoet Pairs gave the Hooft y parameter as -0.016 (29) (G=1.031 (59)) and giving the probability that the
is correct as 1.000, using either a two or three-hypothesis model (Hooft et al., 2008).The hydrogen atoms were all visible in the difference map, but were repositioned geometrically. Initially they were refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98), and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
A 3-term Chebychev polynomial weighting scheme was applied w = [1-(||Fo|-Fc||/6σ(Fo))2]2 / [0.350T0(x)+0.0808T1(x) + 0.0749]*Tn-1(x)] (Watkin, 1994, Prince, 1982) and the was carried out using a 3 σ cutoff giving a total of 4305 reflections.
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997) and Hooft et al. (2008; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C21H26O10S | Dx = 1.351 Mg m−3 |
Mr = 470.50 | Melting point: not measured K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 18167 reflections |
a = 8.6218 (2) Å | θ = 5–28° |
b = 15.2945 (3) Å | µ = 0.19 mm−1 |
c = 17.5449 (3) Å | T = 150 K |
V = 2313.58 (8) Å3 | Fragment, colourless |
Z = 4 | 0.44 × 0.32 × 0.20 mm |
F(000) = 992 |
Area diffractometer | 4562 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −11→11 |
Tmin = 0.94, Tmax = 0.96 | k = −19→19 |
18167 measured reflections | l = −22→22 |
5253 independent reflections |
Refinement on F | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.350 0.808E-01 0.749E-01 |
wR(F2) = 0.035 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.27 e Å−3 |
4305 reflections | Δρmin = −0.26 e Å−3 |
290 parameters | Absolute structure: Flack (1983), 2269 Friedel pairs |
0 restraints | Absolute structure parameter: −0.06 (6) |
Primary atom site location: structure-invariant direct methods |
C21H26O10S | V = 2313.58 (8) Å3 |
Mr = 470.50 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.6218 (2) Å | µ = 0.19 mm−1 |
b = 15.2945 (3) Å | T = 150 K |
c = 17.5449 (3) Å | 0.44 × 0.32 × 0.20 mm |
Area diffractometer | 5253 independent reflections |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | 4562 reflections with I > 2.0σ(I) |
Tmin = 0.94, Tmax = 0.96 | Rint = 0.033 |
18167 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.035 | Δρmax = 0.27 e Å−3 |
S = 1.07 | Δρmin = −0.26 e Å−3 |
4305 reflections | Absolute structure: Flack (1983), 2269 Friedel pairs |
290 parameters | Absolute structure parameter: −0.06 (6) |
0 restraints |
Refinement. The hydrogen atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89, N—H to 0.86, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42086 (19) | 0.44662 (10) | 0.48435 (10) | 0.0278 | |
C2 | 0.4623 (2) | 0.51157 (10) | 0.54678 (9) | 0.0290 | |
C3 | 0.3411 (2) | 0.51009 (11) | 0.60972 (9) | 0.0293 | |
C4 | 0.1802 (2) | 0.52268 (11) | 0.57752 (9) | 0.0272 | |
C5 | 0.15111 (19) | 0.45186 (11) | 0.51798 (10) | 0.0276 | |
C6 | −0.0057 (2) | 0.45811 (11) | 0.48018 (11) | 0.0333 | |
O1 | 0.26620 (14) | 0.45701 (8) | 0.45874 (7) | 0.0279 | |
S1 | 0.46552 (6) | 0.33607 (3) | 0.51937 (3) | 0.0339 | |
C7 | 0.4854 (2) | 0.27972 (11) | 0.43134 (10) | 0.0306 | |
C8 | 0.3607 (2) | 0.23433 (13) | 0.40015 (12) | 0.0390 | |
C9 | 0.3778 (2) | 0.19047 (13) | 0.33162 (13) | 0.0415 | |
C10 | 0.5189 (2) | 0.19112 (11) | 0.29336 (10) | 0.0336 | |
C11 | 0.6441 (2) | 0.23463 (12) | 0.32488 (10) | 0.0329 | |
C12 | 0.6267 (2) | 0.27925 (12) | 0.39370 (11) | 0.0317 | |
O2 | 0.52304 (19) | 0.14679 (9) | 0.22609 (8) | 0.0434 | |
C13 | 0.6652 (3) | 0.14715 (16) | 0.18392 (12) | 0.0527 | |
O3 | 0.46128 (15) | 0.59743 (7) | 0.51222 (7) | 0.0317 | |
C14 | 0.5794 (2) | 0.65171 (13) | 0.52960 (12) | 0.0401 | |
O4 | 0.6831 (2) | 0.63201 (11) | 0.57186 (12) | 0.0741 | |
C15 | 0.5639 (3) | 0.73699 (13) | 0.48905 (13) | 0.0471 | |
O5 | 0.36891 (17) | 0.58054 (9) | 0.66273 (7) | 0.0383 | |
C16 | 0.4478 (3) | 0.56208 (15) | 0.72635 (11) | 0.0448 | |
O6 | 0.5010 (3) | 0.49096 (12) | 0.73892 (11) | 0.0767 | |
C17 | 0.4616 (4) | 0.6411 (2) | 0.77608 (14) | 0.0696 | |
O7 | 0.06770 (15) | 0.50827 (8) | 0.63709 (7) | 0.0334 | |
C18 | 0.0046 (2) | 0.58014 (12) | 0.67193 (10) | 0.0374 | |
O8 | 0.04098 (19) | 0.65349 (8) | 0.65627 (8) | 0.0466 | |
C19 | −0.1121 (3) | 0.55302 (15) | 0.72963 (15) | 0.0595 | |
O9 | −0.01388 (15) | 0.54017 (8) | 0.43982 (7) | 0.0341 | |
C20 | −0.1484 (2) | 0.55419 (14) | 0.40247 (11) | 0.0378 | |
O10 | −0.25415 (18) | 0.50261 (13) | 0.40449 (10) | 0.0578 | |
C21 | −0.1459 (3) | 0.63787 (15) | 0.35898 (12) | 0.0476 | |
H11 | 0.4895 | 0.4569 | 0.4405 | 0.0329* | |
H21 | 0.5668 | 0.4991 | 0.5672 | 0.0352* | |
H31 | 0.3454 | 0.4533 | 0.6367 | 0.0357* | |
H41 | 0.1694 | 0.5812 | 0.5567 | 0.0321* | |
H51 | 0.1563 | 0.3935 | 0.5428 | 0.0332* | |
H61 | −0.0883 | 0.4553 | 0.5182 | 0.0412* | |
H62 | −0.0189 | 0.4084 | 0.4439 | 0.0426* | |
H81 | 0.2625 | 0.2331 | 0.4264 | 0.0476* | |
H91 | 0.2901 | 0.1590 | 0.3105 | 0.0504* | |
H111 | 0.7447 | 0.2344 | 0.2983 | 0.0390* | |
H121 | 0.7146 | 0.3117 | 0.4155 | 0.0391* | |
H131 | 0.6468 | 0.1130 | 0.1371 | 0.0801* | |
H132 | 0.7494 | 0.1231 | 0.2157 | 0.0787* | |
H133 | 0.6895 | 0.2084 | 0.1693 | 0.0802* | |
H152 | 0.6314 | 0.7806 | 0.5124 | 0.0710* | |
H151 | 0.4574 | 0.7570 | 0.4924 | 0.0705* | |
H153 | 0.5884 | 0.7284 | 0.4351 | 0.0710* | |
H172 | 0.5416 | 0.6301 | 0.8131 | 0.1035* | |
H171 | 0.3633 | 0.6515 | 0.7991 | 0.1058* | |
H173 | 0.4931 | 0.6909 | 0.7446 | 0.1044* | |
H192 | −0.1471 | 0.6041 | 0.7564 | 0.0883* | |
H191 | −0.0655 | 0.5113 | 0.7647 | 0.0876* | |
H193 | −0.2004 | 0.5241 | 0.7047 | 0.0882* | |
H212 | −0.2487 | 0.6498 | 0.3385 | 0.0716* | |
H211 | −0.1161 | 0.6835 | 0.3930 | 0.0723* | |
H213 | −0.0724 | 0.6340 | 0.3170 | 0.0725* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0262 (8) | 0.0281 (8) | 0.0291 (8) | 0.0025 (6) | 0.0019 (7) | 0.0036 (7) |
C2 | 0.0285 (8) | 0.0272 (8) | 0.0312 (8) | 0.0019 (7) | −0.0038 (8) | 0.0055 (6) |
C3 | 0.0376 (9) | 0.0248 (8) | 0.0256 (8) | 0.0018 (7) | −0.0030 (7) | 0.0019 (6) |
C4 | 0.0311 (9) | 0.0255 (8) | 0.0250 (8) | 0.0008 (7) | 0.0039 (7) | 0.0025 (6) |
C5 | 0.0281 (8) | 0.0269 (8) | 0.0277 (8) | −0.0001 (6) | 0.0036 (7) | 0.0005 (7) |
C6 | 0.0315 (9) | 0.0336 (8) | 0.0349 (8) | −0.0036 (7) | −0.0019 (8) | 0.0011 (8) |
O1 | 0.0282 (6) | 0.0299 (6) | 0.0258 (6) | 0.0020 (5) | 0.0010 (5) | 0.0012 (5) |
S1 | 0.0391 (2) | 0.03005 (19) | 0.0327 (2) | 0.00833 (19) | 0.0037 (2) | 0.00485 (18) |
C7 | 0.0322 (9) | 0.0244 (7) | 0.0352 (9) | 0.0038 (7) | −0.0009 (8) | 0.0044 (6) |
C8 | 0.0267 (9) | 0.0412 (10) | 0.0492 (11) | 0.0006 (8) | 0.0011 (8) | 0.0039 (9) |
C9 | 0.0348 (10) | 0.0409 (10) | 0.0488 (11) | −0.0048 (8) | −0.0094 (9) | −0.0022 (9) |
C10 | 0.0397 (10) | 0.0271 (8) | 0.0342 (9) | 0.0012 (8) | −0.0072 (8) | 0.0003 (7) |
C11 | 0.0325 (9) | 0.0310 (9) | 0.0354 (9) | −0.0011 (7) | 0.0044 (8) | 0.0002 (7) |
C12 | 0.0310 (9) | 0.0275 (8) | 0.0367 (9) | −0.0022 (7) | −0.0006 (8) | 0.0023 (7) |
O2 | 0.0544 (9) | 0.0377 (7) | 0.0380 (7) | 0.0002 (7) | −0.0072 (7) | −0.0076 (6) |
C13 | 0.0666 (15) | 0.0549 (13) | 0.0365 (11) | 0.0092 (12) | −0.0010 (11) | −0.0083 (10) |
O3 | 0.0334 (6) | 0.0279 (6) | 0.0338 (6) | −0.0016 (5) | −0.0016 (6) | 0.0066 (5) |
C14 | 0.0412 (10) | 0.0334 (9) | 0.0457 (11) | −0.0063 (8) | −0.0018 (9) | −0.0007 (8) |
O4 | 0.0709 (12) | 0.0497 (10) | 0.1018 (15) | −0.0241 (9) | −0.0468 (12) | 0.0199 (10) |
C15 | 0.0560 (13) | 0.0304 (9) | 0.0549 (12) | −0.0044 (9) | 0.0132 (11) | 0.0037 (9) |
O5 | 0.0513 (8) | 0.0370 (7) | 0.0266 (6) | 0.0028 (6) | −0.0104 (6) | −0.0042 (5) |
C16 | 0.0469 (12) | 0.0581 (13) | 0.0293 (9) | −0.0087 (10) | −0.0104 (9) | 0.0065 (9) |
O6 | 0.1008 (16) | 0.0624 (11) | 0.0669 (11) | −0.0045 (11) | −0.0511 (12) | 0.0164 (9) |
C17 | 0.0801 (19) | 0.0841 (18) | 0.0445 (12) | −0.0086 (16) | −0.0198 (14) | −0.0186 (12) |
O7 | 0.0412 (7) | 0.0274 (6) | 0.0316 (6) | 0.0034 (5) | 0.0126 (5) | −0.0009 (5) |
C18 | 0.0477 (11) | 0.0303 (9) | 0.0341 (9) | 0.0071 (8) | 0.0074 (9) | −0.0021 (7) |
O8 | 0.0655 (10) | 0.0284 (6) | 0.0460 (8) | 0.0065 (7) | 0.0131 (8) | 0.0003 (6) |
C19 | 0.0782 (17) | 0.0413 (12) | 0.0591 (14) | 0.0126 (12) | 0.0369 (14) | 0.0011 (10) |
O9 | 0.0268 (6) | 0.0367 (6) | 0.0387 (7) | 0.0021 (5) | −0.0064 (5) | 0.0006 (5) |
C20 | 0.0249 (9) | 0.0564 (12) | 0.0321 (9) | 0.0068 (9) | −0.0045 (8) | −0.0100 (8) |
O10 | 0.0281 (7) | 0.0905 (13) | 0.0547 (10) | −0.0112 (7) | −0.0078 (7) | 0.0022 (9) |
C21 | 0.0476 (12) | 0.0529 (13) | 0.0423 (11) | 0.0190 (10) | −0.0134 (10) | −0.0079 (9) |
C1—C2 | 1.521 (2) | C12—H121 | 0.984 |
C1—O1 | 1.416 (2) | O2—C13 | 1.432 (3) |
C1—S1 | 1.8398 (16) | C13—H131 | 0.985 |
C1—H11 | 0.984 | C13—H132 | 0.987 |
C2—C3 | 1.520 (2) | C13—H133 | 0.994 |
C2—O3 | 1.4464 (18) | O3—C14 | 1.349 (2) |
C2—H21 | 0.988 | C14—O4 | 1.200 (3) |
C3—C4 | 1.511 (2) | C14—C15 | 1.492 (3) |
C3—O5 | 1.443 (2) | C15—H152 | 0.975 |
C3—H31 | 0.990 | C15—H151 | 0.970 |
C4—C5 | 1.525 (2) | C15—H153 | 0.978 |
C4—O7 | 1.443 (2) | O5—C16 | 1.337 (2) |
C4—H41 | 0.972 | C16—O6 | 1.201 (3) |
C5—C6 | 1.509 (2) | C16—C17 | 1.496 (3) |
C5—O1 | 1.439 (2) | C17—H172 | 0.962 |
C5—H51 | 0.995 | C17—H171 | 0.952 |
C6—O9 | 1.443 (2) | C17—H173 | 0.980 |
C6—H61 | 0.977 | O7—C18 | 1.370 (2) |
C6—H62 | 0.998 | C18—O8 | 1.197 (2) |
S1—C7 | 1.7770 (18) | C18—C19 | 1.486 (3) |
C7—C8 | 1.392 (3) | C19—H192 | 0.961 |
C7—C12 | 1.385 (3) | C19—H191 | 0.973 |
C8—C9 | 1.385 (3) | C19—H193 | 0.983 |
C8—H81 | 0.965 | O9—C20 | 1.350 (2) |
C9—C10 | 1.390 (3) | C20—O10 | 1.206 (3) |
C9—H91 | 0.969 | C20—C21 | 1.490 (3) |
C10—C11 | 1.384 (3) | C21—H212 | 0.973 |
C10—O2 | 1.362 (2) | C21—H211 | 0.953 |
C11—C12 | 1.395 (3) | C21—H213 | 0.974 |
C11—H111 | 0.984 | ||
C2—C1—O1 | 112.11 (13) | C12—C11—H111 | 120.4 |
C2—C1—S1 | 108.09 (12) | C11—C12—C7 | 120.66 (17) |
O1—C1—S1 | 113.96 (11) | C11—C12—H121 | 120.0 |
C2—C1—H11 | 108.5 | C7—C12—H121 | 119.3 |
O1—C1—H11 | 107.4 | C10—O2—C13 | 117.93 (17) |
S1—C1—H11 | 106.4 | O2—C13—H131 | 106.9 |
C1—C2—C3 | 110.61 (14) | O2—C13—H132 | 109.7 |
C1—C2—O3 | 106.83 (13) | H131—C13—H132 | 113.0 |
C3—C2—O3 | 108.29 (13) | O2—C13—H133 | 108.5 |
C1—C2—H21 | 110.4 | H131—C13—H133 | 108.5 |
C3—C2—H21 | 111.1 | H132—C13—H133 | 110.1 |
O3—C2—H21 | 109.4 | C2—O3—C14 | 117.36 (14) |
C2—C3—C4 | 110.96 (14) | O3—C14—O4 | 123.21 (18) |
C2—C3—O5 | 110.06 (14) | O3—C14—C15 | 111.29 (17) |
C4—C3—O5 | 107.35 (14) | O4—C14—C15 | 125.49 (19) |
C2—C3—H31 | 109.6 | C14—C15—H152 | 110.1 |
C4—C3—H31 | 108.9 | C14—C15—H151 | 109.4 |
O5—C3—H31 | 109.9 | H152—C15—H151 | 108.9 |
C3—C4—C5 | 108.45 (13) | C14—C15—H153 | 109.0 |
C3—C4—O7 | 109.09 (13) | H152—C15—H153 | 111.7 |
C5—C4—O7 | 106.10 (13) | H151—C15—H153 | 107.8 |
C3—C4—H41 | 110.2 | C3—O5—C16 | 117.69 (15) |
C5—C4—H41 | 112.4 | O5—C16—O6 | 122.6 (2) |
O7—C4—H41 | 110.4 | O5—C16—C17 | 110.9 (2) |
C4—C5—C6 | 113.78 (14) | O6—C16—C17 | 126.5 (2) |
C4—C5—O1 | 110.03 (13) | C16—C17—H172 | 108.0 |
C6—C5—O1 | 107.28 (14) | C16—C17—H171 | 108.1 |
C4—C5—H51 | 109.3 | H172—C17—H171 | 112.4 |
C6—C5—H51 | 106.9 | C16—C17—H173 | 108.7 |
O1—C5—H51 | 109.5 | H172—C17—H173 | 108.6 |
C5—C6—O9 | 108.34 (13) | H171—C17—H173 | 110.9 |
C5—C6—H61 | 110.6 | C4—O7—C18 | 117.88 (13) |
O9—C6—H61 | 109.7 | O7—C18—O8 | 123.04 (17) |
C5—C6—H62 | 109.5 | O7—C18—C19 | 110.42 (16) |
O9—C6—H62 | 110.1 | O8—C18—C19 | 126.54 (18) |
H61—C6—H62 | 108.6 | C18—C19—H192 | 108.6 |
C5—O1—C1 | 114.46 (13) | C18—C19—H191 | 109.5 |
C1—S1—C7 | 100.12 (8) | H192—C19—H191 | 110.7 |
S1—C7—C8 | 120.59 (14) | C18—C19—H193 | 110.3 |
S1—C7—C12 | 120.12 (14) | H192—C19—H193 | 109.9 |
C8—C7—C12 | 119.28 (17) | H191—C19—H193 | 107.8 |
C7—C8—C9 | 120.06 (18) | C6—O9—C20 | 114.75 (14) |
C7—C8—H81 | 120.0 | O9—C20—O10 | 122.1 (2) |
C9—C8—H81 | 119.9 | O9—C20—C21 | 111.87 (17) |
C8—C9—C10 | 120.60 (18) | O10—C20—C21 | 126.01 (19) |
C8—C9—H91 | 119.3 | C20—C21—H212 | 109.7 |
C10—C9—H91 | 120.1 | C20—C21—H211 | 108.2 |
C9—C10—C11 | 119.57 (17) | H212—C21—H211 | 109.9 |
C9—C10—O2 | 115.99 (17) | C20—C21—H213 | 110.2 |
C11—C10—O2 | 124.43 (18) | H212—C21—H213 | 108.9 |
C10—C11—C12 | 119.80 (18) | H211—C21—H213 | 110.0 |
C10—C11—H111 | 119.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H11···O10i | 0.98 | 2.40 | 3.248 (3) | 144 |
C19—H191···O2ii | 0.97 | 2.54 | 3.362 (3) | 142 |
C21—H213···O6iii | 0.97 | 2.43 | 3.143 (3) | 130 |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H26O10S |
Mr | 470.50 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 8.6218 (2), 15.2945 (3), 17.5449 (3) |
V (Å3) | 2313.58 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.44 × 0.32 × 0.20 |
Data collection | |
Diffractometer | Area diffractometer |
Absorption correction | Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.94, 0.96 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 18167, 5253, 4562 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.035, 1.07 |
No. of reflections | 4305 |
No. of parameters | 290 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.26 |
Absolute structure | Flack (1983), 2269 Friedel pairs |
Absolute structure parameter | −0.06 (6) |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997) and Hooft et al. (2008, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H11···O10i | 0.98 | 2.40 | 3.248 (3) | 144 |
C19—H191···O2ii | 0.97 | 2.54 | 3.362 (3) | 142 |
C21—H213···O6iii | 0.97 | 2.43 | 3.143 (3) | 130 |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1/2, −y+1, z−1/2. |
Acknowledgements
The authors thank the EPSRC (Project Studentship GR/T24692/01 to LD) for financial support.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cao, S., Hernández-Matéo, F. & Roy, R. (1998). J. Carbohydr. Chem. 17, 609–631. Web of Science CrossRef CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Drouin, L., Compton, R. G., Fietkau, N. & Fairbanks, A. J. (2007). Synlett, pp.2711–2717. Google Scholar
Durette, P. L. & Shen, T. Y. (1980). Carbohydr. Res. 81, 261–274. CrossRef CAS PubMed Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
France, R. R., Compton, R. G., Davis, B. G., Fairbanks, A. J., Rees, N. V. & Wadhawan, J. D. (2004). Org. Biomol. Chem. 2, 2195–2202. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mootoo, D. R., Konradsson, P., Udodong, U. & Fraser-Reid, B. (1988). J. Am. Chem. Soc. 110, 5583–5584. CrossRef CAS Web of Science Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Poh, B.-L. (1982). Carbohydr. Res. 111, 163–169. CrossRef CAS Web of Science Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, p. 104. New York: Springer-Verlag. Google Scholar
Roy, R., Andersson, F. O. & Letellier, M. (1992). Tetrahedron Lett. 33, 6053–6056. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thioglycosides are extremely useful and versatile glycoside donors for the synthesis of oligosaccharides, which may be activated by a wide range of electrophiles and also by electrochemical methods (France et al., 2004). The nature of an aromatic substituent of an aryl thioglycoside has a strongly modulating effect on the reactivity of such a thioglycoside; strongly electron donating substituents greatly increase their reactivity towards electrophiles (Roy et al., 1992), and also decrease their oxidation potentials so that they may be electrochemically activated at relatively low externally applied potentials (Drouin et al., 2007). Such 'armed' (Mootoo et al., 1988) thioglycosides may therefore be used as donors for the glycosylation of less reactive 'disarmed' thioglycoside acceptors. The title compound was obtained in a single step from mannose penta-acetate by treatment with 4-methoxythiophenol and boron trifluoride etherate in dichloromethane (Fig. 1). Spectroscopic data obtained for this compound was in disagreement with that previously reported in the only reported synthesis (Durette et al., 1980). Moreover the anomalous optical rotation reported therein had also been highlighted in a subsequent paper (Poh, 1982). Single crystal X-ray analysis was therefore undertaken to confirm the authenticity of our material, and this indeed demonstrated the correctness of our structural assignment (Fig. 2), and in particular the α-anomeric configuration of the thioaryl group. We conclude that the previous report (Durette et al., 1980) in fact probably details the synthesis of the corresponding β-anomer, formed by an SN2 substitution reaction on the α-glycosyl bromide, which was incorrectly assigned the α-anomeric configuration by the authors.
The structure has no strong intermolecular interactions, although there are a number of weaker C—H···O interactions that lead to the formation of sheets (Fig. 3 and Table 1)