metal-organic compounds
catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole-κN4]copper(II)]-di-μ-chlorido]: a powder study
aResearch Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus
*Correspondence e-mail: iva@bsu.by
The 2(C3H6N4O)2]n, was obtained by the from laboratory X-ray powder diffraction data collected at room temperature. The unique CuII ion lies on an inversion center and is in a slightly distorted octahedral coordination environment. In the hydroxyethyl group, all H atoms, the O atom and its attached C atom are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4. The OH group is involved in an intramolecular O—H⋯N hydrogen bond.
of the title polymeric complex, [CuClRelated literature
For related literature, see: Ivashkevich et al. (2001); Ivashkevich, Lyakhov et al. (2005); Ivashkevich, Voitekhovich & Lyakhov (2005); Stassen et al. (2002); Werner et al. (1985); Allen (2002); Virovets et al. (1995, 1996).
Experimental
Crystal data
|
Data collection
|
Refinement
Data collection: local program; cell FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF and PLATON.
Supporting information
10.1107/S1600536808022137/lh2648sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536808022137/lh2648Isup2.rtv
A solution, containing 2.13 g (0.0125 mol) of CuCl2.2H2O in 75 ml of ethanol, was added to a slightly heated solution of 1-(2-hydroxyethyl)tetrazole (2.85 g, 0.025 mol) in a solvent mixture (45 ml of ethanol and 30 ml of n-buthanol), with stirring at room temperature. After stirring the reaction mixture for 10 min, the obtained green crystals of (I) were filtered off, air dried and recrystallized from (ethanol—n-buthanol) mixture (v/v = 4:1) [3.55 g, yield 78.3%]. Calc.(%): Cu 17.52, Cl 19.59. Found (%): Cu 18.2, Cl 20.1.
The monoclinic unit-cell dimensions of (I) were determined with the indexing program TREOR90 (Werner et al., 1985). The obtained values indicated isotypism of (I) with layered coordination polymers CuCl2L2 (L = 1-alkyltetrazole) that crystallize in the monoclinic θ=30°. A Marsh-Dollase correction of intensities for [100] of plate-like grains in the sample (Marsh, 1932; Dollase, 1986) was applied.
P21/c. This and the atomic coordinates of CuCl2L2 with L = 1-ethyltetrazole (Virovets et al., 1995) were used as starting parameters for the with the FULLPROF program (Rodríguez-Carvajal, 2001). Background intensity was found by Fourier filtering technique as implemented in the FULLPROF program, under visual inspection of the resulting background curve. Correction for profile asymmetry was made for reflections up to 2The
performed primarily by using individual isotropic displacement parameters for non-H atoms, revealed rather high values of Biso for atoms of C—O fragment. From this fact an assumption was made that C—O fragment was disordered over two positions. It was confirmed in subsequent by introducing disorder positions for the above C and O atoms. In final all non-H atoms were refined with overall Biso parameter.All H atoms were placed in geometrically calculated positions, using the program SHELXL97 (Sheldrick, 2008), with displacement parameter Biso(H)=1.2Biso(C) for H atom at C5 tetrazole ring atom and Biso(H)=1.5Biso(C,O) for the methylene and hydroxyl groups.
Soft restraints on some interatomic distances and bond angles of ligand molecule, based on a geometric analysis of a large number of 1-substituted tetrazoles (Cambridge Structural Database, version 5.29 of November 2007; Allen, 2002), were used in the Rietved
Observed, calculated and difference difraction patterns are shown in Fig. 3.Data collection: local program; cell
FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF (Rodríguez-Carvajal, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF (Rodríguez-Carvajal, 2001) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of (I) with the atomic numbering scheme. 2-hydroxyethyl substituent is shown as disordered over two positions. | |
Fig. 2. Layered structure of (I), viewed along the b axis. Disordered 2-hydroxyethyl substituent is shown only in position with occupancy factor of 0.562 (12). | |
Fig. 3. The Rietveld plot, showing the observed (circles), calculated (line) and difference patterns for (I). The reflection positions are shown above the difference pattern. |
[CuCl2(C3H6N4O)2] | Z = 2 |
Mr = 362.69 | F(000) = 366.0 |
Monoclinic, P21/c | Dx = 1.894 Mg m−3 |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.5418 Å |
a = 13.3349 (11) Å | T = 295 K |
b = 6.7406 (6) Å | Particle morphology: plate |
c = 7.3419 (5) Å | green |
β = 105.450 (8)° | flat sheet, 30 × 30 mm |
V = 636.08 (9) Å3 | Specimen preparation: Prepared at 295 K and 100 kPa |
HZG-4A (Carl Zeiss, Jena) diffractometer | Data collection mode: reflection |
Radiation source: fine-focus sealed X-ray tube, BSV-29 | Scan method: step |
Ni filtered monochromator | 2θmin = 5.000°, 2θmax = 100.000°, 2θstep = 0.020° |
Specimen mounting: packed powder pellet |
Refinement on Inet | Profile function: psevdo-Voigt |
Least-squares matrix: full with fixed elements per cycle | 48 parameters |
Rp = 0.042 | 21 restraints |
Rwp = 0.067 | 0 constraints |
Rexp = 0.086 | H-atom parameters constrained |
RBragg = 0.029 | Weighting scheme based on measured s.u.'s |
χ2 = 0.608 | (Δ/σ)max = 0.02 |
4751 data points | Background function: Fourier filtering |
Excluded region(s): none | Preferred orientation correction: Marsh–Dollase function (Marsh, 1932; Dollase, 1986) |
[CuCl2(C3H6N4O)2] | β = 105.450 (8)° |
Mr = 362.69 | V = 636.08 (9) Å3 |
Monoclinic, P21/c | Z = 2 |
a = 13.3349 (11) Å | Cu Kα radiation, λ = 1.5418 Å |
b = 6.7406 (6) Å | T = 295 K |
c = 7.3419 (5) Å | flat sheet, 30 × 30 mm |
HZG-4A (Carl Zeiss, Jena) diffractometer | Scan method: step |
Specimen mounting: packed powder pellet | 2θmin = 5.000°, 2θmax = 100.000°, 2θstep = 0.020° |
Data collection mode: reflection |
Rp = 0.042 | 4751 data points |
Rwp = 0.067 | 48 parameters |
Rexp = 0.086 | 21 restraints |
RBragg = 0.029 | H-atom parameters constrained |
χ2 = 0.608 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.00000 | 0.00000 | 0.50000 | 0.0309 (10)* | |
Cl | −0.0624 (4) | 0.2048 (11) | 0.2569 (10) | 0.0309 (10)* | |
N1 | 0.24708 (16) | 0.3706 (2) | 0.583 (4) | 0.0309 (10)* | |
N2 | 0.2982 (2) | 0.19676 (13) | 0.595 (3) | 0.0309 (10)* | |
N3 | 0.2308 (2) | 0.05581 (18) | 0.577 (3) | 0.0309 (10)* | |
N4 | 0.1358 (4) | 0.1377 (3) | 0.553 (4) | 0.0309 (10)* | |
C5 | 0.14654 (16) | 0.3314 (4) | 0.545 (5) | 0.0309 (10)* | |
H5 | 0.09292 | 0.42403 | 0.51621 | 0.0309 (10)* | |
C6 | 0.3006 (6) | 0.5643 (10) | 0.5973 (16) | 0.0309 (10)* | |
H61A | 0.24602 | 0.66346 | 0.56434 | 0.0309 (10)* | 0.562 (12) |
H61B | 0.33551 | 0.56618 | 0.49731 | 0.0309 (10)* | 0.562 (12) |
C71 | 0.3778 (18) | 0.641 (2) | 0.768 (3) | 0.0309 (10)* | 0.562 (12) |
H71A | 0.41791 | 0.74586 | 0.73283 | 0.0309 (10)* | 0.562 (12) |
H71B | 0.34071 | 0.69633 | 0.85467 | 0.0309 (10)* | 0.562 (12) |
O1 | 0.4451 (15) | 0.489 (3) | 0.862 (5) | 0.0309 (10)* | 0.562 (12) |
H1 | 0.42627 | 0.38207 | 0.81168 | 0.0309 (10)* | 0.562 (12) |
H62A | 0.31564 | 0.60902 | 0.72756 | 0.0309 (10)* | 0.438 (12) |
H62B | 0.25331 | 0.65967 | 0.52039 | 0.0309 (10)* | 0.438 (12) |
C72 | 0.3987 (12) | 0.565 (7) | 0.539 (4) | 0.0309 (10)* | 0.438 (12) |
H72A | 0.38957 | 0.48960 | 0.42321 | 0.0309 (10)* | 0.438 (12) |
H72B | 0.41727 | 0.69967 | 0.51599 | 0.0309 (10)* | 0.438 (12) |
O2 | 0.479 (2) | 0.480 (6) | 0.684 (5) | 0.0309 (10)* | 0.438 (12) |
H2 | 0.46854 | 0.35907 | 0.68929 | 0.0309 (10)* | 0.438 (12) |
Cu—Cl | 2.234 (7) | N3—N4 | 1.350 (11) |
Cu—N4 | 1.979 (10) | N4—C5 | 1.316 (4) |
Cu—Cli | 3.008 (7) | C6—C71 | 1.49 (2) |
Cu—Clii | 2.234 (7) | C6—C72 | 1.48 (2) |
Cu—N4ii | 1.979 (10) | C5—H5 | 0.9300 |
Cu—Cliii | 3.008 (7) | C6—H61B | 0.9700 |
O1—C71 | 1.41 (3) | C6—H62A | 0.9700 |
O2—C72 | 1.42 (5) | C6—H61A | 0.9700 |
O1—H1 | 0.8200 | C6—H62B | 0.9700 |
O2—H2 | 0.8200 | C71—H71A | 0.9700 |
N1—N2 | 1.346 (6) | C71—H71B | 0.9700 |
N1—C5 | 1.321 (15) | C72—H72A | 0.9700 |
N1—C6 | 1.478 (8) | C72—H72B | 0.9700 |
N2—N3 | 1.291 (7) | Cu—Cuiv | 4.9835 (4) |
Cl—Cu—N4 | 89.8 (7) | N1—C6—C72 | 115 (2) |
Cl—Cu—Cli | 90.8 (2) | N1—C6—C71 | 125.5 (14) |
Cl—Cu—Clii | 180 | O1—C71—C6 | 111.5 (15) |
Cl—Cu—N4ii | 90.2 (7) | O2—C72—C6 | 110 (2) |
Cl—Cu—Cliii | 89.2 (2) | N1—C5—H5 | 126.00 |
Cli—Cu—N4 | 92.6 (5) | N4—C5—H5 | 126.00 |
Clii—Cu—N4 | 90.2 (7) | N1—C6—H61B | 106.00 |
N4—Cu—N4ii | 180 | N1—C6—H62A | 108.00 |
Cliii—Cu—N4 | 87.4 (5) | N1—C6—H62B | 108.00 |
Cli—Cu—Clii | 89.2 (2) | C71—C6—H61A | 106.00 |
Cli—Cu—N4ii | 87.4 (5) | C71—C6—H61B | 106.00 |
Cli—Cu—Cliii | 180.00 | H61A—C6—H61B | 106.00 |
Clii—Cu—N4ii | 89.8 (7) | C72—C6—H62A | 109.00 |
Clii—Cu—Cliii | 90.8 (2) | C72—C6—H62B | 109.00 |
Cliii—Cu—N4ii | 92.6 (5) | H62A—C6—H62B | 107.00 |
Cu—Cl—Cuiv | 143.5 (2) | N1—C6—H61A | 106.00 |
C71—O1—H1 | 109.00 | O1—C71—H71A | 109.00 |
C72—O2—H2 | 109.00 | O1—C71—H71B | 109.00 |
N2—N1—C6 | 122.6 (7) | C6—C71—H71B | 109.00 |
C5—N1—C6 | 129.4 (6) | H71A—C71—H71B | 108.00 |
N2—N1—C5 | 107.9 (5) | C6—C71—H71A | 109.00 |
N1—N2—N3 | 107.9 (6) | C6—C72—H72A | 110.00 |
N2—N3—N4 | 108.4 (3) | C6—C72—H72B | 110.00 |
Cu—N4—N3 | 127.6 (3) | O2—C72—H72A | 110.00 |
N3—N4—C5 | 107.5 (8) | O2—C72—H72B | 109.00 |
Cu—N4—C5 | 124.1 (9) | H72A—C72—H72B | 108.00 |
N1—C5—N4 | 107.8 (9) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.8200 | 2.3500 | 3.08 (3) | 149.00 |
O2—H2···N2 | 0.8200 | 2.4600 | 3.02 (3) | 126.00 |
C5—H5···Cliv | 0.9300 | 2.7200 | 3.34 (2) | 126.00 |
Symmetry code: (iv) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C3H6N4O)2] |
Mr | 362.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 13.3349 (11), 6.7406 (6), 7.3419 (5) |
β (°) | 105.450 (8) |
V (Å3) | 636.08 (9) |
Z | 2 |
Radiation type | Cu Kα, λ = 1.5418 Å |
Specimen shape, size (mm) | Flat sheet, 30 × 30 |
Data collection | |
Diffractometer | HZG-4A (Carl Zeiss, Jena) diffractometer |
Specimen mounting | Packed powder pellet |
Data collection mode | Reflection |
Scan method | Step |
2θ values (°) | 2θmin = 5.000 2θmax = 100.000 2θstep = 0.020 |
Refinement | |
R factors and goodness of fit | Rp = 0.042, Rwp = 0.067, Rexp = 0.086, RBragg = 0.029, χ2 = 0.608 |
No. of data points | 4751 |
No. of parameters | 48 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Computer programs: local program, FULLPROF (Rodríguez-Carvajal, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), FULLPROF (Rodríguez-Carvajal, 2001) and PLATON (Spek, 2003).
Cu—Cl | 2.234 (7) | Cu—Cli | 3.008 (7) |
Cu—N4 | 1.979 (10) | Cu—Cuii | 4.9835 (4) |
Cl—Cu—N4 | 89.8 (7) | Cli—Cu—N4 | 92.6 (5) |
Cl—Cu—Cli | 90.8 (2) | N4—Cu—N4iii | 180 |
Cl—Cu—Cliii | 180 | Cliv—Cu—N4 | 87.4 (5) |
Cl—Cu—N4iii | 90.2 (7) | Cu—Cl—Cuii | 143.5 (2) |
Cl—Cu—Cliv | 89.2 (2) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.8200 | 2.3500 | 3.08 (3) | 149.00 |
O2—H2···N2 | 0.8200 | 2.4600 | 3.02 (3) | 126.00 |
C5—H5···Clii | 0.9300 | 2.7200 | 3.34 (2) | 126.00 |
Symmetry code: (ii) −x, y+1/2, −z+1/2. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ivashkevich, D. O., Lyakhov, A. S., Gaponik, P. N., Bogatikov, A. N. & Govorova, A. A. (2001). Acta Cryst. E57, m335–m337. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ivashkevich, L. S., Lyakhov, A. S., Ivashkevich, D. O., Degtyarik, M. M. & Gaponik, P. N. (2005). Russ. J. Inorg. Chem. 50, 78–82. Google Scholar
Ivashkevich, D. O., Voitekhovich, S. V. & Lyakhov, A. S. (2005). XXII International Chugaev Conference on Coordination Chemistry, Kishinev, 2005. Book of Abstracts, p. 371. Google Scholar
Marsh, A. (1932). Z. Kristallogr. 81, 285–297. Google Scholar
Rodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stassen, A. F., Kooijman, H., Spek, A. L., Jos de Jongh, L., Haasnoot, J. G. & Reedijk, J. (2002). Inorg. Chem. 41, 6468–6473. Web of Science CSD CrossRef PubMed CAS Google Scholar
Virovets, A. V., Baidina, I. A., Alekseev, V. I., Podberezskaya, N. V. & Lavrenova, L. G. (1996). Zh. Strukt. Khim. 37, 330–336. CAS Google Scholar
Virovets, A. V., Podberezskaya, N. V., Lavrenova, L. G. & Bikzhanova, G. A. (1995). Acta Cryst. C51, 1084–1087. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of copper(II) chloride with substituted tetrazoles attract attention because of their magnetic bahaviour at low temperatures. Among them, there are layered coordination polymers with square grids of only Cu and Cl atoms, of the composition CuCl2L2, where L = 1-ethyltetrazole (Virovets et al., 1995), 1-allyltetrazole (Virovets et al., 1996), 1-(2-azidoethyl)terazole (Ivashkevich et al., 2001), 1-(2-chloroethyl)tetrazole (Stassen et al., 2002), 1-benzyltetrazole (Ivashkevich, Voitekhovich & Lyakhov, 2005), and 1-methyltetrazole (Ivashkevich, Lyakhov, Ivashkevich, Degtyarik & Gaponik, 2005). These compounds crystallize in the space group P21/c and are isotypic. Here, we present another example, poly[[bis(1-(2-hydroxyethyl)tetrazole-N4)copper(II)]-di-µ-chloro], (I), (Fig. 1). As it is difficult to obtain single crystals for structural analysis, the compound (I) was investigated by X-ray powder diffraction.
The Cu atom lies on inversion center and shows a slightly distorted octahedral coordination environment. Equatorial sites are occupied by two trans positioned N atoms and two Cl atoms; Cl atoms lying in axial positions are essentially more distant from the Cu atom (Table 1). Each Cl atom is a bridge between the neighbouring Cu atoms, forming two different in length Cu—Cl bonds, with Cu—Cl—Cu angle of 143.4 (2)°. These bonds are responsible for the formation of polymeric layers parallel to the yz plane (Fig. 2). Within a layer, the shortest Cu···Cu distance is 4.9835 (4) Å, whereas between two neighbouring layers, the closest Cu centers are separated by cell dimension a. Only van der Waals interactions are between the layers.
The 2-hydroxyethyl substituent at the tetrazole ring atom N1 was found to be disordered over two positions, with almost equal occupancies of 0.562 (12) for C71—O1 and 0.438 (12) for C72—O2 (Fig. 1). For both positions, OH groups are involved in intramolecular hydrogen bonds O—H···N. There are also hydrogen bonds C—H···Cl (Table 2).