organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1H-1,2,3-Benzotriazol-1-ylmeth­yl)-3-phenyl-1,2,4-oxa­diazole

aLaboratory of Beibu Gulf Marine Protection and Exploitation, Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com

(Received 21 June 2008; accepted 30 June 2008; online 5 July 2008)

In the title mol­ecule, C15H11N5O, the 1,2,3-benzotriazole and 3-phenyl-1,2,4-oxadiazole units are individually essentially planar and the dihedral angle between them is 80.2 (2)°. In the crystal structure, mol­ecules are connected via weak inter­molecular C—H⋯N hydrogen bonds to form two-dimensional sheets.

Related literature

For related literature, see: Batista et al. (2000[Batista, H., Carpenter, G. B. & Srivastava, R. M. (2000). J. Chem. Crystallogr. 30, 131-134.]); Wardell et al. (2003[Wardell, S. M. S. V., Carvalho, C. E. M., Low, J. N. & Glidewell, C. (2003). Acta Cryst. E59, o1729-o1730.]); Srinivasan et al. (2007[Srinivasan, N., Nandhini, M. S., Ranjithkumar, R., Perumal, S. & Krishnakumar, R. V. (2007). Acta Cryst. E63, o3750.]); Wang et al. (2004a[Wang, H.-B., Chen, J.-H. & Wang, J.-T. (2004a). Acta Cryst. E60, o1478-o1480.],b[Wang, H.-B., Chen, J.-H. & Wang, J.-T. (2004b). Acta Cryst. E60, o1709-o1711.],c[Wang, H.-B., Chen, J.-H. & Wang, J.-T. (2004c). Acta Cryst. E60, o1917-o1918.], 2007[Wang, P., Wang, H., Kang, S., Li, H. & Wu, W. (2007). Acta Cryst. E63, o4180.]); Romero (2001[Romero, J. R. (2001). Expert Opin. Investig. Drugs, 10, 369-379.]); Terashita et al. (2002[Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 02060439.]); Zen et al. (1983[Zen, S., Nishino, T., Harada, K., Nakamura, H. & Iitaka, Y. (1983). Chem. Pharm. Bull. 31, 4181-4184.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N5O

  • Mr = 277.29

  • Monoclinic, P 21 /c

  • a = 4.7009 (13) Å

  • b = 11.100 (3) Å

  • c = 25.265 (7) Å

  • β = 95.234 (6)°

  • V = 1312.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.18 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.989

  • 6803 measured reflections

  • 2322 independent reflections

  • 1324 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.103

  • S = 1.02

  • 2322 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N5i 0.97 2.59 3.443 (3) 147
C9—H9A⋯N2ii 0.97 2.60 3.466 (3) 149
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of 1,2,4-oxadiazole derivatives has attracted a great interest due to their pharmacological properties such as intrinsic analgesic (Zen et al., 1983; Terashita et al., 2002) and antipicornaviral (Romero, 2001) effects. Wang et al. (2004a,b,c;2007) have described the synthesis and crystal structures of a series of these types of compounds. Herein, we report the synthesis and crystal structure of the title compound, (I), containing both 1,2,4-oxadiazole and 1,2,3-benzotriazole organic functional groups. The molecular structure of (I) is shown in Fig. 1. The title molecule can be considered as two rings systems: the 3-phenyl-1,2,4-oxadiazol-5-yl (A) and benzotriazole (B). All atoms in A, B are individually essentially planar with dihedral angles of 4.4 (2) ° and 0.5 (2) ° between the rings in each, respectively. The dihedral angle between A and B is 80.2 (2) °. This conformation presents no nonbonded interactions (Batista et al.,2000). Molecules are connected via weak intermolecular C—H···N hydrogen bonds (Table. 1 and Fig. 2) to form two-dimensional sheets.

Related literature top

For related literature, see: Batista et al. (2000); Wardell et al. (2003); Srinivasan et al. (2007); Wang et al. (2004a,b,c, 2007).

For related literature, see: Romero (2001); Terashita et al. (2002); Zen et al. (1983).

Experimental top

Reagents and solvents used were of commercially available quality. 1,2,3-Benzotriazole (1 mmol) was dissolved in acetonitrile (80 ml) and potassium carbonate (15 mmol) was added followed by 3-phenyl-5-chloromethyl-1,2,4-oxadiazole (1 mmol). The resulting mixture was refluxed for 10 h. After cooling and filtering, the crude title compound was obtained and purified by recrystallization from ethyl acetate. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
5-(1H-1,2,3-Benzotriazol-1-ylmethyl)-3-phenyl-1,2,4-oxadiazole top
Crystal data top
C15H11N5OF(000) = 576
Mr = 277.29Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 760 reflections
a = 4.7009 (13) Åθ = 2.5–19.5°
b = 11.100 (3) ŵ = 0.09 mm1
c = 25.265 (7) ÅT = 295 K
β = 95.234 (6)°Block, colorless
V = 1312.8 (6) Å30.18 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
2322 independent reflections
Radiation source: fine-focus sealed tube1324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.983, Tmax = 0.989k = 1313
6803 measured reflectionsl = 2029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 0.0112P]
where P = (Fo2 + 2Fc2)/3
2322 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H11N5OV = 1312.8 (6) Å3
Mr = 277.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7009 (13) ŵ = 0.09 mm1
b = 11.100 (3) ÅT = 295 K
c = 25.265 (7) Å0.18 × 0.14 × 0.12 mm
β = 95.234 (6)°
Data collection top
Bruker SMART
diffractometer
2322 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1324 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.989Rint = 0.054
6803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2322 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1731 (4)0.96111 (14)0.37087 (7)0.0620 (5)
N10.3748 (5)0.94501 (18)0.41561 (8)0.0626 (6)
N20.4253 (4)0.80085 (17)0.35428 (7)0.0477 (5)
N30.1502 (4)0.80219 (18)0.24592 (8)0.0488 (5)
N40.1194 (5)0.68098 (19)0.23986 (9)0.0626 (6)
N50.2711 (5)0.64667 (18)0.20147 (9)0.0644 (6)
C10.5148 (5)0.8490 (2)0.40357 (9)0.0443 (6)
C20.7410 (5)0.7967 (2)0.43988 (9)0.0445 (6)
C30.8252 (5)0.8510 (2)0.48824 (10)0.0587 (7)
H30.73930.92240.49760.070*
C41.0355 (6)0.7994 (3)0.52249 (10)0.0669 (8)
H41.09270.83690.55460.080*
C51.1613 (6)0.6933 (3)0.50957 (11)0.0675 (8)
H51.30190.65860.53300.081*
C61.0795 (6)0.6382 (2)0.46194 (11)0.0662 (8)
H61.16520.56630.45320.079*
C70.8703 (5)0.6893 (2)0.42703 (10)0.0550 (7)
H70.81570.65170.39480.066*
C80.2200 (5)0.8714 (2)0.33742 (9)0.0460 (6)
C90.0215 (5)0.8644 (2)0.28801 (9)0.0595 (7)
H9A0.15120.82250.29560.071*
H9B0.03130.94520.27630.071*
C100.3265 (5)0.8462 (2)0.21070 (9)0.0428 (6)
C110.4018 (5)0.7457 (2)0.18258 (9)0.0472 (6)
C120.5861 (5)0.7564 (2)0.14226 (10)0.0578 (7)
H120.63740.68980.12290.069*
C130.6871 (5)0.8689 (3)0.13269 (10)0.0630 (7)
H130.81250.87880.10660.076*
C140.6070 (5)0.9691 (2)0.16101 (10)0.0594 (7)
H140.67901.04420.15290.071*
C150.4258 (5)0.9607 (2)0.20035 (10)0.0515 (6)
H150.37241.02790.21900.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0714 (12)0.0570 (11)0.0567 (12)0.0150 (9)0.0015 (10)0.0011 (10)
N10.0734 (15)0.0596 (14)0.0533 (15)0.0106 (12)0.0026 (12)0.0082 (12)
N20.0492 (12)0.0528 (12)0.0405 (13)0.0061 (10)0.0007 (10)0.0001 (11)
N30.0531 (12)0.0484 (13)0.0431 (13)0.0011 (10)0.0055 (10)0.0021 (11)
N40.0712 (15)0.0494 (15)0.0642 (16)0.0082 (11)0.0104 (13)0.0118 (13)
N50.0798 (17)0.0458 (14)0.0649 (16)0.0017 (12)0.0070 (13)0.0007 (13)
C10.0483 (14)0.0460 (15)0.0392 (16)0.0039 (12)0.0066 (12)0.0000 (13)
C20.0461 (14)0.0511 (15)0.0370 (14)0.0060 (12)0.0069 (12)0.0030 (13)
C30.0609 (17)0.0646 (17)0.0502 (17)0.0045 (14)0.0033 (14)0.0087 (15)
C40.0683 (19)0.086 (2)0.0451 (17)0.0147 (17)0.0028 (15)0.0076 (17)
C50.0631 (18)0.084 (2)0.0536 (19)0.0015 (17)0.0062 (15)0.0128 (18)
C60.0714 (19)0.0660 (18)0.0596 (19)0.0080 (15)0.0031 (15)0.0014 (16)
C70.0584 (16)0.0633 (17)0.0421 (15)0.0026 (14)0.0024 (13)0.0053 (14)
C80.0496 (15)0.0492 (16)0.0401 (16)0.0014 (13)0.0087 (13)0.0022 (13)
C90.0555 (16)0.0702 (18)0.0519 (17)0.0105 (13)0.0005 (14)0.0054 (15)
C100.0470 (14)0.0412 (14)0.0375 (14)0.0012 (12)0.0113 (12)0.0017 (13)
C110.0563 (15)0.0371 (14)0.0449 (15)0.0025 (13)0.0138 (13)0.0014 (13)
C120.0666 (17)0.0570 (17)0.0479 (16)0.0153 (14)0.0052 (14)0.0071 (14)
C130.0647 (18)0.073 (2)0.0509 (18)0.0072 (15)0.0034 (14)0.0064 (16)
C140.0647 (17)0.0539 (17)0.0584 (18)0.0072 (14)0.0015 (15)0.0066 (15)
C150.0580 (16)0.0431 (15)0.0508 (17)0.0012 (13)0.0095 (13)0.0049 (13)
Geometric parameters (Å, º) top
O1—C81.338 (3)C5—H50.9300
O1—N11.419 (2)C6—C71.382 (3)
N1—C11.303 (3)C6—H60.9300
N2—C81.284 (3)C7—H70.9300
N2—C11.385 (3)C8—C91.491 (3)
N3—N41.360 (2)C9—H9A0.9700
N3—C101.361 (3)C9—H9B0.9700
N3—C91.446 (3)C10—C111.386 (3)
N4—N51.312 (3)C10—C151.387 (3)
N5—C111.366 (3)C11—C121.401 (3)
C1—C21.460 (3)C12—C131.365 (3)
C2—C31.387 (3)C12—H120.9300
C2—C71.390 (3)C13—C141.393 (3)
C3—C41.378 (3)C13—H130.9300
C3—H30.9300C14—C151.370 (3)
C4—C51.370 (3)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.373 (3)
C8—O1—N1105.82 (17)C2—C7—H7119.9
C1—N1—O1103.41 (18)N2—C8—O1114.0 (2)
C8—N2—C1102.7 (2)N2—C8—C9129.8 (2)
N4—N3—C10110.2 (2)O1—C8—C9116.2 (2)
N4—N3—C9120.5 (2)N3—C9—C8111.64 (19)
C10—N3—C9129.1 (2)N3—C9—H9A109.3
N5—N4—N3108.1 (2)C8—C9—H9A109.3
N4—N5—C11108.5 (2)N3—C9—H9B109.3
N1—C1—N2114.0 (2)C8—C9—H9B109.3
N1—C1—C2122.2 (2)H9A—C9—H9B108.0
N2—C1—C2123.8 (2)N3—C10—C11104.2 (2)
C3—C2—C7118.8 (2)N3—C10—C15133.4 (2)
C3—C2—C1120.9 (2)C11—C10—C15122.3 (2)
C7—C2—C1120.2 (2)N5—C11—C10108.9 (2)
C4—C3—C2120.2 (2)N5—C11—C12130.5 (2)
C4—C3—H3119.9C10—C11—C12120.5 (2)
C2—C3—H3119.9C13—C12—C11117.0 (2)
C5—C4—C3120.5 (2)C13—C12—H12121.5
C5—C4—H4119.7C11—C12—H12121.5
C3—C4—H4119.7C12—C13—C14121.6 (2)
C4—C5—C6119.9 (3)C12—C13—H13119.2
C4—C5—H5120.0C14—C13—H13119.2
C6—C5—H5120.0C15—C14—C13122.3 (2)
C5—C6—C7120.2 (3)C15—C14—H14118.9
C5—C6—H6119.9C13—C14—H14118.9
C7—C6—H6119.9C14—C15—C10116.2 (2)
C6—C7—C2120.3 (2)C14—C15—H15121.9
C6—C7—H7119.9C10—C15—H15121.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N5i0.972.593.443 (3)147
C9—H9A···N2ii0.972.603.466 (3)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11N5O
Mr277.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.7009 (13), 11.100 (3), 25.265 (7)
β (°) 95.234 (6)
V3)1312.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6803, 2322, 1324
Rint0.054
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.103, 1.02
No. of reflections2322
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N5i0.972.593.443 (3)146.9
C9—H9A···N2ii0.972.603.466 (3)148.8
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a grant from the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2007XJ15).

References

First citationBatista, H., Carpenter, G. B. & Srivastava, R. M. (2000). J. Chem. Crystallogr. 30, 131–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRomero, J. R. (2001). Expert Opin. Investig. Drugs, 10, 369–379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, N., Nandhini, M. S., Ranjithkumar, R., Perumal, S. & Krishnakumar, R. V. (2007). Acta Cryst. E63, o3750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 02060439.  Google Scholar
First citationWang, H.-B., Chen, J.-H. & Wang, J.-T. (2004a). Acta Cryst. E60, o1478–o1480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-B., Chen, J.-H. & Wang, J.-T. (2004b). Acta Cryst. E60, o1709–o1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-B., Chen, J.-H. & Wang, J.-T. (2004c). Acta Cryst. E60, o1917–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, P., Wang, H., Kang, S., Li, H. & Wu, W. (2007). Acta Cryst. E63, o4180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., Carvalho, C. E. M., Low, J. N. & Glidewell, C. (2003). Acta Cryst. E59, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZen, S., Nishino, T., Harada, K., Nakamura, H. & Iitaka, Y. (1983). Chem. Pharm. Bull. 31, 4181–4184.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds