organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1434-o1435

(E)-3-(3,4-Di­meth­oxy­phen­yl)-1-(2-fur­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 1 July 2008; accepted 3 July 2008; online 9 July 2008)

In the title mol­ecule, C15H14O4, the benzene and furyl rings are inclined to each other with a dihedral angle of 41.5 (1)°. An intra­molecular C—H⋯O hydrogen-bond inter­action generates an S(5) ring motif. In the crystal structure, mol­ecules are stacked along the b axis and the crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions. In addition, ππ stacking inter­actions with a centroid-to-centroid distance of 3.5855 (11) Å are observed.

Related literature

For related literature on the non-linear optical properties of chromophore derivatives, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]). For other related literature, see: Chantrapromma et al. (2005[Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.], 2006[Chantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875-o877.]); Fun et al. (2006[Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O4

  • Mr = 258.26

  • Monoclinic, C 2

  • a = 21.5582 (5) Å

  • b = 5.6105 (1) Å

  • c = 10.4622 (3) Å

  • β = 101.510 (2)°

  • V = 1239.98 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.42 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.996

  • 7017 measured reflections

  • 1997 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.10

  • 1997 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the ring C8–C13

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.93 2.32 3.247 (3) 173
C3—H3A⋯O3ii 0.93 2.42 3.338 (3) 167
C7—H7A⋯O2 0.93 2.47 2.810 (3) 101
C14—H14BCg1iii 0.96 2.66 3.431 (2) 137
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Among the many types of NLO chromophores developed so far, the dipolar push–pull molecules consisting of electron donor and acceptor groups inter-bridged by a π-segment have received the predominant attention (Agrinskaya et al., 1999). As a part of the investigation of nonlinear compounds (Chantrapromma et al., 2005, 2006; Fun et al., 2006; Patil, Fun et al., 2007; Patil, Dharmaprakash et al., 2007; Patil et al., 2006), the title compound (I) has recently been prepared in our laboratory and its crystal structure is presented here. The non-centrosymmetric crystal of the title compound should exhibit second-order NLO properties.

The bond lengths and bond angles in (I) have normal values (Allen et al., 1987). The benzene and furyl rings in the molecule are essentially planar with the maximum deviation from planarity being 0.016 (2) Å for atom C10 and 0.003 (2) Å for atom C4 respectively. The dihedral angle between the phenyl and the furyl rings is 41.5 (1)°, indicating that they are twisted from each other.

An intramolecular C—H···O hydrogen bond generates a S(5) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are stacked along the b axis. The crystal packing is consolidated by C—H···O and C—H···π interactions. ππ interactions with the centroid···centroid(1 -x, y,3 - z) distance of 3.5855 (11) Å is observed.

Related literature top

For related literature on the non-linear optical properties of chromophore derivatives, see: Agrinskaya et al. (1999). For related literature, see: Chantrapromma et al. (2005, 2006); Fun et al. (2006); Patil, Fun et al. (2007); Patil, Dharmaprakash et al. (2007); Patil et al. (2006). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

3,4-dimethoxybenzaldehyde (0.01 mol, 1.66 g m) in ethanol (20 ml) was mixed with 2-acetyl furan (0.01 mol, 1.01 ml) in 20 ml ethanol and the mixture was treated with 5 ml of 10% sodium hydroxide solution and stirred at room temperature for 6 h. The precipitate obtained was poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered, dried and recrystallized from N,N-dimethylformamide (DMF) by slow evaporation.

Refinement top

H atoms were positioned geometrically [C—H = 0.93Å and 0.96 Å for methyl H atoms] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Uequ(C) methyl. The rotating group model was used for the methyl group hydrogen atoms. In the absence of significant anomalous dispersion effects 1283 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-3-(3,4-Dimethoxyphenyl)-1-(2-furyl)prop-2-en-1-one top
Crystal data top
C15H14O4F(000) = 544
Mr = 258.26Dx = 1.383 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1982 reflections
a = 21.5582 (5) Åθ = 3.0–30.0°
b = 5.6105 (1) ŵ = 0.10 mm1
c = 10.4622 (3) ÅT = 100 K
β = 101.510 (2)°Needle, colourless
V = 1239.98 (5) Å30.42 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1997 independent reflections
Radiation source: fine-focus sealed tube1707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3030
Tmin = 0.947, Tmax = 0.996k = 77
7017 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
1997 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C15H14O4V = 1239.98 (5) Å3
Mr = 258.26Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.5582 (5) ŵ = 0.10 mm1
b = 5.6105 (1) ÅT = 100 K
c = 10.4622 (3) Å0.42 × 0.05 × 0.04 mm
β = 101.510 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1707 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.996Rint = 0.033
7017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
1997 reflectionsΔρmin = 0.20 e Å3
174 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57239 (6)0.0466 (3)1.44832 (13)0.0232 (4)
O20.48812 (8)0.1128 (3)1.23361 (16)0.0332 (4)
O30.20877 (6)0.3835 (3)0.77192 (13)0.0207 (3)
O40.25511 (6)0.7519 (3)0.67784 (12)0.0205 (3)
C10.55488 (9)0.4315 (4)1.39689 (18)0.0214 (5)
H1A0.53880.57031.35400.026*
C20.60096 (9)0.4149 (5)1.51546 (19)0.0243 (5)
H2A0.62110.54081.56480.029*
C30.60942 (8)0.1816 (5)1.54141 (19)0.0235 (5)
H3A0.63700.12011.61370.028*
C40.53928 (8)0.2049 (4)1.35948 (17)0.0186 (4)
C50.49518 (9)0.1039 (4)1.2480 (2)0.0208 (4)
C60.46005 (8)0.2776 (4)1.15509 (17)0.0195 (4)
H6A0.47110.43801.16140.023*
C70.41218 (8)0.2036 (4)1.06159 (18)0.0197 (4)
H7A0.40250.04201.06010.024*
C80.37371 (8)0.3532 (4)0.96152 (17)0.0177 (4)
C90.31001 (8)0.2882 (4)0.91378 (17)0.0178 (4)
H9A0.29390.15040.94430.021*
C100.27144 (8)0.4282 (4)0.82177 (17)0.0178 (4)
C110.29632 (8)0.6304 (4)0.77127 (17)0.0164 (4)
C120.35917 (8)0.6949 (4)0.81736 (18)0.0189 (4)
H12A0.37580.82940.78440.023*
C130.39718 (8)0.5570 (4)0.91321 (18)0.0189 (4)
H13A0.43890.60260.94510.023*
C140.18004 (8)0.1967 (4)0.83195 (19)0.0209 (4)
H14A0.13530.19600.79800.031*
H14B0.18780.22190.92450.031*
H14C0.19770.04650.81380.031*
C150.28193 (10)0.9223 (5)0.60272 (19)0.0232 (4)
H15A0.24970.97910.53240.035*
H15B0.31520.84840.56790.035*
H15C0.29891.05370.65740.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (6)0.0220 (9)0.0236 (7)0.0022 (6)0.0043 (5)0.0049 (7)
O20.0346 (8)0.0191 (9)0.0376 (9)0.0034 (7)0.0128 (7)0.0013 (9)
O30.0168 (5)0.0235 (9)0.0198 (6)0.0018 (6)0.0014 (5)0.0065 (7)
O40.0204 (6)0.0228 (9)0.0175 (6)0.0022 (6)0.0015 (5)0.0081 (7)
C10.0210 (8)0.0222 (13)0.0196 (8)0.0002 (8)0.0003 (7)0.0021 (9)
C20.0227 (8)0.0295 (14)0.0187 (8)0.0004 (9)0.0009 (7)0.0014 (10)
C30.0172 (8)0.0337 (15)0.0174 (8)0.0027 (9)0.0021 (6)0.0028 (10)
C40.0158 (7)0.0211 (11)0.0173 (8)0.0028 (8)0.0005 (6)0.0039 (9)
C50.0190 (8)0.0190 (12)0.0224 (9)0.0030 (8)0.0005 (7)0.0003 (9)
C60.0187 (8)0.0201 (11)0.0176 (8)0.0029 (8)0.0012 (6)0.0009 (9)
C70.0193 (8)0.0173 (11)0.0205 (9)0.0012 (8)0.0008 (7)0.0006 (9)
C80.0176 (7)0.0179 (11)0.0161 (8)0.0043 (8)0.0002 (6)0.0015 (9)
C90.0197 (8)0.0159 (11)0.0168 (8)0.0014 (7)0.0015 (6)0.0006 (8)
C100.0165 (7)0.0197 (11)0.0158 (8)0.0008 (7)0.0001 (6)0.0015 (9)
C110.0182 (8)0.0169 (11)0.0133 (8)0.0021 (7)0.0015 (6)0.0010 (8)
C120.0197 (8)0.0204 (12)0.0167 (8)0.0008 (8)0.0033 (6)0.0007 (9)
C130.0158 (7)0.0224 (12)0.0178 (8)0.0012 (8)0.0016 (6)0.0026 (9)
C140.0189 (8)0.0234 (12)0.0194 (8)0.0022 (8)0.0016 (6)0.0026 (9)
C150.0305 (9)0.0196 (12)0.0189 (8)0.0003 (9)0.0033 (7)0.0063 (9)
Geometric parameters (Å, º) top
O1—C31.360 (3)C7—C81.464 (3)
O1—C41.377 (2)C7—H7A0.9300
O2—C51.231 (3)C8—C131.386 (3)
O3—C101.371 (2)C8—C91.412 (2)
O3—C141.425 (3)C9—C101.384 (3)
O4—C111.365 (2)C9—H9A0.9300
O4—C151.431 (3)C10—C111.402 (3)
C1—C41.353 (3)C11—C121.392 (2)
C1—C21.429 (2)C12—C131.396 (3)
C1—H1A0.9300C12—H12A0.9300
C2—C31.342 (4)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.464 (3)C14—H14C0.9600
C5—C61.475 (3)C15—H15A0.9600
C6—C71.339 (2)C15—H15B0.9600
C6—H6A0.9300C15—H15C0.9600
C3—O1—C4105.99 (18)C10—C9—C8120.4 (2)
C10—O3—C14116.67 (15)C10—C9—H9A119.8
C11—O4—C15116.78 (14)C8—C9—H9A119.8
C4—C1—C2106.2 (2)O3—C10—C9124.77 (19)
C4—C1—H1A126.9O3—C10—C11115.27 (16)
C2—C1—H1A126.9C9—C10—C11119.95 (16)
C3—C2—C1106.4 (2)O4—C11—C12124.57 (19)
C3—C2—H2A126.8O4—C11—C10115.50 (15)
C1—C2—H2A126.8C12—C11—C10119.92 (17)
C2—C3—O1111.20 (17)C11—C12—C13119.73 (19)
C2—C3—H3A124.4C11—C12—H12A120.1
O1—C3—H3A124.4C13—C12—H12A120.1
C1—C4—O1110.20 (16)C8—C13—C12120.98 (16)
C1—C4—C5132.75 (19)C8—C13—H13A119.5
O1—C4—C5117.05 (19)C12—C13—H13A119.5
O2—C5—C4121.66 (19)O3—C14—H14A109.5
O2—C5—C6122.51 (18)O3—C14—H14B109.5
C4—C5—C6115.8 (2)H14A—C14—H14B109.5
C7—C6—C5119.7 (2)O3—C14—H14C109.5
C7—C6—H6A120.1H14A—C14—H14C109.5
C5—C6—H6A120.1H14B—C14—H14C109.5
C6—C7—C8126.1 (2)O4—C15—H15A109.5
C6—C7—H7A117.0O4—C15—H15B109.5
C8—C7—H7A117.0H15A—C15—H15B109.5
C13—C8—C9118.95 (17)O4—C15—H15C109.5
C13—C8—C7122.56 (16)H15A—C15—H15C109.5
C9—C8—C7118.5 (2)H15B—C15—H15C109.5
C4—C1—C2—C30.5 (3)C7—C8—C9—C10178.20 (18)
C1—C2—C3—O10.2 (3)C14—O3—C10—C98.3 (3)
C4—O1—C3—C20.2 (2)C14—O3—C10—C11172.75 (17)
C2—C1—C4—O10.6 (2)C8—C9—C10—O3178.34 (19)
C2—C1—C4—C5179.8 (2)C8—C9—C10—C112.8 (3)
C3—O1—C4—C10.5 (2)C15—O4—C11—C1214.7 (3)
C3—O1—C4—C5179.81 (17)C15—O4—C11—C10165.54 (18)
C1—C4—C5—O2179.5 (2)O3—C10—C11—O41.2 (2)
O1—C4—C5—O20.4 (3)C9—C10—C11—O4177.80 (18)
C1—C4—C5—C60.5 (3)O3—C10—C11—C12178.59 (18)
O1—C4—C5—C6179.55 (16)C9—C10—C11—C122.4 (3)
O2—C5—C6—C79.9 (3)O4—C11—C12—C13179.89 (18)
C4—C5—C6—C7170.05 (18)C10—C11—C12—C130.3 (3)
C5—C6—C7—C8178.99 (19)C9—C8—C13—C121.0 (3)
C6—C7—C8—C1329.9 (3)C7—C8—C13—C12179.74 (19)
C6—C7—C8—C9149.4 (2)C11—C12—C13—C81.4 (3)
C13—C8—C9—C101.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.932.323.247 (3)173
C3—H3A···O3ii0.932.423.338 (3)167
C7—H7A···O20.932.472.810 (3)101
C14—H14B···Cg1iii0.962.663.431 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H14O4
Mr258.26
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)21.5582 (5), 5.6105 (1), 10.4622 (3)
β (°) 101.510 (2)
V3)1239.98 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
7017, 1997, 1707
Rint0.033
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.10
No. of reflections1997
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.932.323.247 (3)173
C3—H3A···O3ii0.932.423.338 (3)167
C7—H7A···O20.932.472.810 (3)101
C14—H14B···Cg1iii0.962.663.431 (2)137
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y1/2, z+2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096–o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875–o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725–o2727.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1434-o1435
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds