organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1510-o1511

(E)-1-(2-Thien­yl)-3-(2,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 July 2008; accepted 9 July 2008; online 16 July 2008)

In the title mol­ecule, C16H16O4S, the enone fragment, thio­phene ring and benzene ring are individually essentially planar. The thio­phene ring is disordered over two sites, corresponding to a rotation of approximately 180° about the single C—C bond to which it is attached. The approximate ratio of occupancies for the major and minor components is 0.872 (2):0.128 (2). The major component of the thio­phene ring and the benzene ring are twisted from each other by 13.92 (19)°. An intra­molecular C—H⋯O hydrogen bond generates an S(5)S(5) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen-bonding inter­actions. In addition, a ππ stacking inter­action, with a centroid–centroid distance of 3.852 (2) Å, and short S⋯O [2.9378 (12) Å] and O⋯O [2.5811 (16) Å] contacts are observed.

Related literature

For related literature, see: Chantrapromma et al. (2005[Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.], 2006[Chantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875-o877.]); Fun et al. (2006[Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Dharmaprakash et al.(2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Patil et al. (2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). E62, o3718-o3720.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O4S

  • Mr = 304.35

  • Monoclinic, P 21 /c

  • a = 7.5391 (1) Å

  • b = 7.9225 (1) Å

  • c = 24.3399 (3) Å

  • β = 97.021 (1)°

  • V = 1442.88 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.25 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.967

  • 33027 measured reflections

  • 4256 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.07

  • 4256 reflections

  • 211 parameters

  • 120 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.55 3.363 (4) 146
C7—H7A⋯O1 0.93 2.52 2.8416 (18) 101
C7—H7A⋯O4 0.93 2.39 2.7477 (19) 103
C16—H16B⋯O4ii 0.96 2.56 3.2952 (19) 133
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y-1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (I) has been synthesized as part of our crystallographic studies on nonlinear optical materials (Chantrapromma et al., 2005, 2006; Fun et al., 2006; Patil, Fun et al., 2007; Patil, Dharmaprakash et al., 2007). We report herein the crystal structure of the title compound, (I).

In the title molecular structure (I), the thiophene ring is disordered over two sites (atoms of the minor occupancy component are labelled with the suffix X), corresponding to a rotation of approximately 180° about the C4—C5 bond. The bond lengths and bond angles are found to have normal values (Allen et al., 1987) and agree with a related structure (Patil et al., 2006) with the execption of some parameters of the thiophene ring, which are probably a consequence of the disorder. The benzene and thiophene rings are individually planar, with maximum deviations of 0.019 (2) Å for atom C12 and -0.074 (2)Å for atom C1X. The molecule is twisted about the C7—C8 bond with a dihedral angle of 13.93 (19)° between the benzene ring and S1/C1—C4 [15.9 (19)° for S1X/C1X—C3X].

Intramolecular hydrogen bond C—H···O generates ring motif S(5)S(5) (Bernstein et al., 1995). The crystal packing is stabilized by intra and intermolecular C—H···O interactions. ππ interactions between the S1/C1—C4 (centroid Cg1) and C8—C13 (centroid Cg3) rings [Cg1···Cg3i=3.852 (2) Å] [symmetry code: (i) -x,-y,-z] together with S···O=2.9378 (12)Å and O···O=2.5811 (16)Å short contacts are observed.

Related literature top

For related literature, see: Chantrapromma et al. (2005, 2006); Fun et al. (2006); Patil, Fun et al. (2007); Patil, Dharmaprakash et al.(2007). For bond-length data, see: Allen et al. (1987); Patil et al. (2006). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

2,4,5-trimethoxybenzaldehyde (0.01 mol, 1.96 g m) in ethanol (30 ml) was mixed with 2-acetylthiophene (0.01 mol, 1.07 ml) in 30 ml ethanol and the mixture was treated with 10 ml of 10% sodium hydroxide solution and stirred at room temperature for 8 h. The precipitate obtained was poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered, dried and recrystallized from N, N-dimethylformamide (DMF) by slow evaporation.

Refinement top

H atoms were positioned geometrically [C—H = 0.93Å; and CH3=0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups. The ratio of the refined occupancies for the major and minor components of the disordered thiophene ring is 0.872 (2):0.128 (2). Similarity and rigid-bond restraints were applied to the disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Open bonds indicate the minor disorder component. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound,viewed along the c axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the minor component of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2-Thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O4SF(000) = 640
Mr = 304.35Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4291 reflections
a = 7.5391 (1) Åθ = 2.7–28.4°
b = 7.9225 (1) ŵ = 0.24 mm1
c = 24.3399 (3) ÅT = 100 K
β = 97.021 (1)°Block, yellow
V = 1442.88 (3) Å30.25 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4256 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 30.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.942, Tmax = 0.967k = 1110
33027 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.4695P]
where P = (Fo2 + 2Fc2)/3
4256 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.41 e Å3
120 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H16O4SV = 1442.88 (3) Å3
Mr = 304.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5391 (1) ŵ = 0.24 mm1
b = 7.9225 (1) ÅT = 100 K
c = 24.3399 (3) Å0.25 × 0.22 × 0.14 mm
β = 97.021 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4256 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3174 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.967Rint = 0.063
33027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046120 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
4256 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.21432 (18)0.07151 (14)0.09237 (4)0.0317 (3)
O20.17726 (15)0.05965 (14)0.21790 (4)0.0241 (2)
O30.32216 (15)0.21704 (14)0.24632 (4)0.0245 (2)
O40.38751 (16)0.41134 (14)0.05568 (4)0.0256 (3)
C40.1783 (2)0.22121 (18)0.08330 (6)0.0207 (3)
S10.17822 (8)0.24407 (6)0.153399 (18)0.02221 (15)0.870 (2)
C10.1475 (5)0.4570 (4)0.14728 (11)0.0232 (6)0.870 (2)
H1A0.14130.52860.17730.028*0.870 (2)
C20.1330 (9)0.5112 (4)0.09346 (15)0.0270 (8)0.870 (2)
H2A0.11190.62230.08220.032*0.870 (2)
C30.1544 (10)0.3750 (7)0.05759 (18)0.0335 (12)0.870 (2)
H3A0.15260.38830.01960.040*0.870 (2)
S1X0.1377 (15)0.3871 (9)0.0437 (3)0.0239 (13)0.130 (2)
C1X0.145 (7)0.511 (3)0.1014 (8)0.036 (8)*0.130 (2)
H1XA0.14810.62810.10030.043*0.130 (2)
C2X0.147 (4)0.421 (2)0.1494 (9)0.027 (6)*0.130 (2)
H2XA0.12960.46350.18390.032*0.130 (2)
C3X0.180 (3)0.253 (2)0.1369 (6)0.0335 (12)0.130 (2)
H3XA0.20080.16990.16400.040*0.130 (2)
C50.2048 (2)0.05105 (19)0.06134 (6)0.0227 (3)
C60.2186 (2)0.03664 (19)0.00174 (6)0.0237 (3)
H6A0.19750.13150.02060.028*
C70.2608 (2)0.10914 (19)0.02109 (6)0.0224 (3)
H7A0.28160.20090.00270.027*
C80.2776 (2)0.13959 (18)0.07931 (6)0.0203 (3)
C90.3410 (2)0.29444 (19)0.09632 (6)0.0205 (3)
C100.3580 (2)0.32485 (19)0.15198 (6)0.0210 (3)
H10A0.40220.42770.16270.025*
C110.3088 (2)0.20143 (19)0.19118 (6)0.0200 (3)
C120.2371 (2)0.04789 (19)0.17534 (6)0.0204 (3)
C130.2256 (2)0.01779 (19)0.12019 (6)0.0211 (3)
H13A0.18230.08570.10970.025*
C140.0920 (2)0.2100 (2)0.20310 (6)0.0280 (4)
H14A0.05590.27530.23580.042*
H14B0.17360.27460.17800.042*
H14C0.01130.18150.18550.042*
C150.3832 (2)0.3757 (2)0.26506 (7)0.0305 (4)
H15A0.38690.37100.30430.046*
H15B0.30280.46350.25680.046*
H15C0.50070.39880.24670.046*
C160.4083 (2)0.5814 (2)0.07198 (7)0.0278 (3)
H16B0.44050.64980.03970.042*
H16C0.50060.58790.09580.042*
H16D0.29790.62150.09140.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (8)0.0197 (6)0.0187 (5)0.0009 (5)0.0076 (5)0.0019 (4)
O20.0354 (6)0.0222 (5)0.0150 (5)0.0045 (5)0.0046 (4)0.0008 (4)
O30.0346 (6)0.0249 (6)0.0151 (5)0.0023 (5)0.0077 (4)0.0036 (4)
O40.0389 (6)0.0205 (5)0.0167 (5)0.0049 (5)0.0009 (4)0.0005 (4)
C40.0270 (7)0.0213 (7)0.0144 (6)0.0020 (6)0.0050 (5)0.0017 (5)
S10.0312 (3)0.0219 (2)0.0139 (2)0.00063 (17)0.0044 (2)0.00192 (18)
C10.0330 (13)0.0168 (12)0.0206 (11)0.0017 (12)0.0061 (7)0.0042 (9)
C20.0443 (19)0.0168 (11)0.0206 (11)0.0016 (8)0.0072 (15)0.0015 (7)
C30.0466 (19)0.0352 (17)0.020 (2)0.0016 (12)0.0106 (17)0.0004 (13)
S1X0.041 (3)0.0111 (18)0.022 (3)0.0021 (16)0.014 (2)0.0060 (17)
C3X0.0466 (19)0.0352 (17)0.020 (2)0.0016 (12)0.0106 (17)0.0004 (13)
C50.0312 (8)0.0208 (7)0.0167 (7)0.0011 (6)0.0048 (6)0.0011 (5)
C60.0353 (8)0.0201 (7)0.0164 (7)0.0018 (6)0.0058 (6)0.0006 (5)
C70.0277 (8)0.0234 (7)0.0163 (6)0.0010 (6)0.0025 (6)0.0002 (5)
C80.0269 (7)0.0190 (7)0.0153 (6)0.0026 (6)0.0042 (5)0.0023 (5)
C90.0242 (7)0.0203 (7)0.0166 (7)0.0006 (6)0.0005 (5)0.0002 (5)
C100.0256 (7)0.0207 (7)0.0172 (7)0.0005 (6)0.0042 (5)0.0033 (5)
C110.0228 (7)0.0234 (7)0.0140 (6)0.0023 (6)0.0037 (5)0.0021 (5)
C120.0246 (7)0.0207 (7)0.0163 (6)0.0017 (6)0.0039 (5)0.0006 (5)
C130.0286 (8)0.0184 (7)0.0169 (7)0.0009 (6)0.0047 (6)0.0022 (5)
C140.0395 (9)0.0243 (8)0.0201 (7)0.0073 (7)0.0030 (6)0.0005 (6)
C150.0429 (10)0.0298 (9)0.0196 (7)0.0075 (7)0.0064 (7)0.0071 (6)
C160.0396 (9)0.0207 (7)0.0221 (7)0.0019 (7)0.0002 (6)0.0007 (6)
Geometric parameters (Å, º) top
O1—C51.2268 (18)C3X—H3XA0.9300
O2—C121.3741 (17)C5—C61.472 (2)
O2—C141.4206 (19)C6—C71.337 (2)
O3—C111.3637 (17)C6—H6A0.9300
O3—C151.4319 (19)C7—C81.4582 (19)
O4—C91.3692 (17)C7—H7A0.9300
O4—C161.4182 (18)C8—C91.398 (2)
C4—C3X1.328 (13)C8—C131.407 (2)
C4—C31.371 (5)C9—C101.3972 (19)
C4—C51.473 (2)C10—C111.385 (2)
C4—S1X1.636 (7)C10—H10A0.9300
C4—S11.7158 (15)C11—C121.404 (2)
S1—C11.707 (3)C12—C131.376 (2)
C1—C21.370 (4)C13—H13A0.9300
C1—H1A0.9300C14—H14A0.9600
C2—C31.410 (6)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—H3A0.9300C15—H15A0.9600
S1X—C1X1.708 (18)C15—H15B0.9600
C1X—C2X1.368 (17)C15—H15C0.9600
C1X—H1XA0.9300C16—H16B0.9600
C2X—C3X1.391 (17)C16—H16C0.9600
C2X—H2XA0.9300C16—H16D0.9600
C12—O2—C14116.47 (11)C6—C7—H7A116.6
C11—O3—C15117.29 (12)C8—C7—H7A116.6
C9—O4—C16117.89 (11)C9—C8—C13117.93 (13)
C3X—C4—C3105.4 (8)C9—C8—C7120.43 (13)
C3X—C4—C5123.0 (8)C13—C8—C7121.61 (13)
C3—C4—C5131.6 (2)O4—C9—C10122.55 (13)
C3X—C4—S1X113.9 (8)O4—C9—C8116.52 (12)
C5—C4—S1X123.0 (3)C10—C9—C8120.92 (13)
C3—C4—S1110.1 (2)C11—C10—C9119.84 (14)
C5—C4—S1118.30 (11)C11—C10—H10A120.1
S1X—C4—S1118.6 (3)C9—C10—H10A120.1
C1—S1—C491.96 (10)O3—C11—C10124.62 (13)
C2—C1—S1112.8 (2)O3—C11—C12115.23 (13)
C2—C1—H1A123.6C10—C11—C12120.15 (13)
S1—C1—H1A123.6O2—C12—C13125.01 (13)
C1—C2—C3110.5 (3)O2—C12—C11115.59 (12)
C1—C2—H2A124.7C13—C12—C11119.36 (13)
C3—C2—H2A124.7C12—C13—C8121.70 (14)
C4—C3—C2114.6 (3)C12—C13—H13A119.2
C4—C3—H3A122.7C8—C13—H13A119.2
C2—C3—H3A122.7O2—C14—H14A109.5
C4—S1X—C1X89.5 (9)O2—C14—H14B109.5
C2X—C1X—S1X113.4 (16)H14A—C14—H14B109.5
C2X—C1X—H1XA123.3O2—C14—H14C109.5
S1X—C1X—H1XA123.3H14A—C14—H14C109.5
C1X—C2X—C3X107.3 (17)H14B—C14—H14C109.5
C1X—C2X—H2XA126.4O3—C15—H15A109.5
C3X—C2X—H2XA126.4O3—C15—H15B109.5
C4—C3X—C2X114.5 (14)H15A—C15—H15B109.5
C4—C3X—H3XA122.8O3—C15—H15C109.5
C2X—C3X—H3XA122.8H15A—C15—H15C109.5
O1—C5—C6122.66 (14)H15B—C15—H15C109.5
O1—C5—C4120.09 (13)O4—C16—H16B109.5
C6—C5—C4117.25 (13)O4—C16—H16C109.5
C7—C6—C5121.74 (14)H16B—C16—H16C109.5
C7—C6—H6A119.1O4—C16—H16D109.5
C5—C6—H6A119.1H16B—C16—H16D109.5
C6—C7—C8126.89 (14)H16C—C16—H16D109.5
C3X—C4—S1—C113 (12)S1—C4—C5—C6175.26 (11)
C3—C4—S1—C10.2 (4)O1—C5—C6—C77.0 (3)
C5—C4—S1—C1178.97 (18)C4—C5—C6—C7173.08 (15)
S1X—C4—S1—C14.5 (5)C5—C6—C7—C8179.63 (14)
C4—S1—C1—C21.5 (4)C6—C7—C8—C9173.21 (16)
S1—C1—C2—C32.2 (7)C6—C7—C8—C138.9 (3)
C3X—C4—C3—C22.2 (11)C16—O4—C9—C1016.9 (2)
C5—C4—C3—C2179.9 (4)C16—O4—C9—C8164.24 (14)
S1X—C4—C3—C2155 (5)C13—C8—C9—O4178.88 (13)
S1—C4—C3—C21.0 (7)C7—C8—C9—O40.9 (2)
C1—C2—C3—C42.1 (8)C13—C8—C9—C102.2 (2)
C3X—C4—S1X—C1X6 (2)C7—C8—C9—C10179.86 (14)
C3—C4—S1X—C1X18 (4)O4—C9—C10—C11179.94 (14)
C5—C4—S1X—C1X175.8 (18)C8—C9—C10—C111.1 (2)
S1—C4—S1X—C1X7.8 (19)C15—O3—C11—C103.3 (2)
C4—S1X—C1X—C2X11 (4)C15—O3—C11—C12175.89 (14)
S1X—C1X—C2X—C3X12 (5)C9—C10—C11—O3179.05 (13)
C3—C4—C3X—C2X4 (2)C9—C10—C11—C121.8 (2)
C5—C4—C3X—C2X178.2 (17)C14—O2—C12—C132.3 (2)
S1X—C4—C3X—C2X0 (3)C14—O2—C12—C11175.38 (14)
S1—C4—C3X—C2X163 (13)O3—C11—C12—O24.99 (19)
C1X—C2X—C3X—C48 (4)C10—C11—C12—O2174.20 (13)
C3X—C4—C5—O16.3 (12)O3—C11—C12—C13177.23 (13)
C3—C4—C5—O1176.2 (4)C10—C11—C12—C133.6 (2)
S1X—C4—C5—O1171.6 (5)O2—C12—C13—C8175.11 (14)
S1—C4—C5—O14.8 (2)C11—C12—C13—C82.4 (2)
C3X—C4—C5—C6173.8 (12)C9—C8—C13—C120.4 (2)
C3—C4—C5—C63.7 (5)C7—C8—C13—C12178.33 (14)
S1X—C4—C5—C68.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.553.363 (4)146
C7—H7A···O10.932.522.8416 (18)101
C7—H7A···O40.932.392.7477 (19)103
C16—H16B···O4ii0.962.563.2952 (19)133
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16O4S
Mr304.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5391 (1), 7.9225 (1), 24.3399 (3)
β (°) 97.021 (1)
V3)1442.88 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
33027, 4256, 3174
Rint0.063
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.07
No. of reflections4256
No. of parameters211
No. of restraints120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.553.363 (4)146
C7—H7A···O10.932.522.8416 (18)101
C7—H7A···O40.932.392.7477 (19)103
C16—H16B···O4ii0.962.563.2952 (19)133
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096–o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875–o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725–o2727.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). E62, o3718–o3720.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1510-o1511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds