organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-Bromo-1-(4-methyl­phen­yl)-3-phenyl­prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cSyngene International Pvt Limited, Plot Nos. 2 and 3 C, Unit-II, Bommansandra, Industrial Area, Banglore 560 099, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2008; accepted 16 July 2008; online 19 July 2008)

In the crystal structure of the title compound, C16H13BrO, the two benzene rings are twisted from each other with a dihedral angle of 52.55 (9)°. Both an intra­molecular C—H⋯Br hydrogen bond, which generates an S(6) ring motif, and a short Br⋯O contact [2.9907 (19) Å] may influence the conformation of the mol­ecule. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related literature on chalcone derivatives, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Razak, I. A., Karthikeyan, M. S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1039.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.], 2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]). For related literature on experimental preparation, see: Shivarama Holla et al. (2006[Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657-663.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO

  • Mr = 301.17

  • Orthorhombic, P b c a

  • a = 8.7192 (2) Å

  • b = 11.5819 (2) Å

  • c = 26.4769 (6) Å

  • V = 2673.77 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 100.0 (1) K

  • 0.20 × 0.20 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.556, Tmax = 0.715

  • 14370 measured reflections

  • 3893 independent reflections

  • 2462 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.090

  • S = 1.00

  • 3893 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.54 3.163 (3) 124
C11—H11A⋯Br1 0.93 2.69 3.377 (3) 131
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As part of our crystallographic studies on chalcone derivatives (Fun et al., 2008; Patil et al., 2006,2007) the title compound (I) was synthesized and its crystal structure is reported here.

In the crystal structure of the title compound (I), the bond lengths have have normal values (Allen et al., 1987). The two benzene rings (C1—C6 & C10—C15) are twisted from each other with the dihedral angle of 52.55 (9)°.

Both an intramolecular C—H··· Br hydrogen bond, which generates an S(6) ring motif, and a short Br···O =2.9907 (19)Å contact may influence the conformation of the molecule. The crystal packing is stabilized by weak C—H···O intermolecular interactions.

Related literature top

For related literature on chalcone derivatives, see: Fun et al. (2008); Patil et al. (2006, 2007). For related literature on experimental preparation, see: Shivarama Holla et al. (2006). For standard bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

1-(4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) was prepared by a literature procedure (Shivarama Holla et al., 2006). To a solution of 1- (4-methylphenyl)-3-phenylprop-2-en-1-one (1 mmol) in chloroform (25 ml), bromine (1 mmol) was added slowly with stirring. After the completion of addition of bromine (1 mmol), the reaction mixture was stirred for 24 h. Excess of chloroform was distilled off and the precipitated 2,3- dibromo-1-(4- methylphenyl)-3-phenylpropan-1-one was filtered off and dried. A mixture of dibromopropanone (1 mmol) and triethylamine(1 mmol) in dry benzene (30 ml) was added and the resultant mixture was stirred for 24 h. The excess of solvent when removed under reduced pressure gave the title compound which crystallized from acetone by slow evaporation.

Refinement top

H atoms were positioned geometrically [C—H = 0.93Å and CH3=0.96 Å] and refined using a riding-model, with Uiso(H) = 1.2Ueq(C) and 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds and Br···O short contacts are shown as dashed lines.
(I) top
Crystal data top
C16H13BrOF(000) = 1216
Mr = 301.17Dx = 1.496 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1664 reflections
a = 8.7192 (2) Åθ = 2.8–23.7°
b = 11.5819 (2) ŵ = 3.06 mm1
c = 26.4769 (6) ÅT = 100 K
V = 2673.77 (10) Å3Block, colourless
Z = 80.20 × 0.20 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3893 independent reflections
Radiation source: fine-focus sealed tube2462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 129
Tmin = 0.556, Tmax = 0.715k = 1612
14370 measured reflectionsl = 3616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0317P)2]
where P = (Fo2 + 2Fc2)/3
3893 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H13BrOV = 2673.77 (10) Å3
Mr = 301.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.7192 (2) ŵ = 3.06 mm1
b = 11.5819 (2) ÅT = 100 K
c = 26.4769 (6) Å0.20 × 0.20 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3893 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2462 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.715Rint = 0.070
14370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
3893 reflectionsΔρmin = 0.54 e Å3
164 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13862 (3)0.42397 (2)0.062535 (10)0.02216 (9)
O10.3082 (2)0.38663 (17)0.15935 (7)0.0253 (5)
C10.4236 (3)0.6775 (2)0.16809 (10)0.0177 (6)
H1A0.35630.70840.14440.021*
C20.4991 (4)0.7501 (3)0.20151 (10)0.0228 (7)
H2A0.48130.82920.20050.027*
C30.6008 (4)0.7049 (3)0.23638 (10)0.0262 (7)
H3A0.65120.75370.25880.031*
C40.6275 (4)0.5867 (3)0.23785 (10)0.0266 (7)
H4A0.69770.55650.26080.032*
C50.5499 (3)0.5141 (3)0.20533 (10)0.0214 (6)
H5A0.56570.43480.20710.026*
C60.4477 (3)0.5591 (2)0.16967 (9)0.0158 (6)
C70.3529 (3)0.4759 (2)0.13968 (9)0.0159 (6)
C80.3122 (3)0.5048 (2)0.08629 (9)0.0144 (6)
C90.3995 (3)0.5748 (2)0.05796 (9)0.0143 (5)
H9A0.48480.60180.07540.017*
C100.3931 (3)0.6191 (2)0.00603 (9)0.0150 (6)
C110.2836 (3)0.5907 (2)0.03059 (10)0.0188 (6)
H11A0.20980.53480.02380.023*
C120.2854 (3)0.6461 (3)0.07730 (10)0.0214 (6)
H12A0.21190.62680.10130.026*
C130.3942 (3)0.7295 (2)0.08878 (9)0.0198 (6)
C140.5065 (4)0.7535 (2)0.05306 (9)0.0208 (6)
H14A0.58290.80700.06050.025*
C150.5059 (3)0.6990 (2)0.00666 (9)0.0176 (6)
H15A0.58250.71600.01660.021*
C160.3901 (4)0.7951 (3)0.13811 (10)0.0304 (8)
H16A0.33070.75260.16240.046*
H16B0.49280.80470.15060.046*
H16C0.34440.86940.13280.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02062 (15)0.02191 (16)0.02395 (15)0.00743 (14)0.00516 (12)0.00364 (12)
O10.0315 (13)0.0193 (11)0.0252 (11)0.0079 (10)0.0037 (9)0.0057 (9)
C10.0193 (15)0.0186 (15)0.0152 (13)0.0013 (13)0.0009 (11)0.0003 (11)
C20.0271 (17)0.0233 (16)0.0180 (13)0.0026 (14)0.0031 (12)0.0054 (12)
C30.0308 (19)0.0347 (19)0.0130 (13)0.0064 (16)0.0013 (12)0.0074 (12)
C40.0237 (16)0.039 (2)0.0169 (13)0.0012 (17)0.0041 (12)0.0032 (12)
C50.0280 (17)0.0193 (16)0.0170 (13)0.0043 (14)0.0008 (13)0.0025 (11)
C60.0167 (14)0.0197 (16)0.0110 (12)0.0007 (12)0.0033 (10)0.0019 (10)
C70.0152 (14)0.0149 (14)0.0177 (13)0.0020 (12)0.0008 (11)0.0013 (11)
C80.0141 (13)0.0136 (14)0.0155 (13)0.0018 (11)0.0013 (11)0.0022 (10)
C90.0121 (13)0.0138 (13)0.0168 (12)0.0022 (12)0.0004 (10)0.0039 (11)
C100.0198 (16)0.0109 (13)0.0142 (12)0.0038 (12)0.0001 (11)0.0029 (10)
C110.0184 (15)0.0199 (16)0.0181 (13)0.0010 (13)0.0005 (11)0.0011 (11)
C120.0199 (16)0.0273 (17)0.0171 (13)0.0038 (14)0.0025 (11)0.0013 (12)
C130.0250 (17)0.0218 (15)0.0125 (13)0.0074 (13)0.0041 (11)0.0027 (11)
C140.0274 (17)0.0174 (15)0.0177 (13)0.0021 (13)0.0047 (12)0.0022 (11)
C150.0214 (15)0.0157 (15)0.0157 (13)0.0024 (13)0.0004 (11)0.0033 (11)
C160.036 (2)0.0352 (19)0.0198 (14)0.0072 (16)0.0008 (13)0.0096 (13)
Geometric parameters (Å, º) top
Br1—C81.888 (3)C9—C101.469 (3)
O1—C71.221 (3)C9—H9A0.9300
C1—C21.386 (4)C10—C151.391 (4)
C1—C61.388 (4)C10—C111.400 (4)
C1—H1A0.9300C11—C121.394 (4)
C2—C31.383 (4)C11—H11A0.9300
C2—H2A0.9300C12—C131.387 (4)
C3—C41.390 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.389 (4)
C4—C51.381 (4)C13—C161.511 (4)
C4—H4A0.9300C14—C151.382 (3)
C5—C61.399 (4)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.497 (4)C16—H16A0.9600
C7—C81.496 (3)C16—H16B0.9600
C8—C91.341 (4)C16—H16C0.9600
C2—C1—C6120.5 (3)C10—C9—H9A112.3
C2—C1—H1A119.7C15—C10—C11118.1 (2)
C6—C1—H1A119.7C15—C10—C9115.5 (2)
C3—C2—C1120.1 (3)C11—C10—C9126.3 (3)
C3—C2—H2A120.0C12—C11—C10119.9 (3)
C1—C2—H2A120.0C12—C11—H11A120.1
C2—C3—C4119.9 (3)C10—C11—H11A120.1
C2—C3—H3A120.0C13—C12—C11121.5 (3)
C4—C3—H3A120.0C13—C12—H12A119.2
C5—C4—C3120.0 (3)C11—C12—H12A119.2
C5—C4—H4A120.0C12—C13—C14118.2 (2)
C3—C4—H4A120.0C12—C13—C16121.5 (3)
C4—C5—C6120.4 (3)C14—C13—C16120.3 (3)
C4—C5—H5A119.8C15—C14—C13120.7 (3)
C6—C5—H5A119.8C15—C14—H14A119.6
C1—C6—C5119.0 (3)C13—C14—H14A119.6
C1—C6—C7122.4 (2)C14—C15—C10121.4 (3)
C5—C6—C7118.0 (2)C14—C15—H15A119.3
O1—C7—C8121.1 (2)C10—C15—H15A119.3
O1—C7—C6119.7 (2)C13—C16—H16A109.5
C8—C7—C6119.2 (2)C13—C16—H16B109.5
C9—C8—C7122.0 (2)H16A—C16—H16B109.5
C9—C8—Br1124.7 (2)C13—C16—H16C109.5
C7—C8—Br1113.19 (19)H16A—C16—H16C109.5
C8—C9—C10135.5 (3)H16B—C16—H16C109.5
C8—C9—H9A112.3
C6—C1—C2—C30.8 (4)C6—C7—C8—Br1158.5 (2)
C1—C2—C3—C40.1 (4)C7—C8—C9—C10179.8 (3)
C2—C3—C4—C51.5 (4)Br1—C8—C9—C105.1 (5)
C3—C4—C5—C62.0 (4)C8—C9—C10—C15175.3 (3)
C2—C1—C6—C50.3 (4)C8—C9—C10—C113.2 (5)
C2—C1—C6—C7171.0 (3)C15—C10—C11—C123.1 (4)
C4—C5—C6—C11.1 (4)C9—C10—C11—C12175.3 (3)
C4—C5—C6—C7172.8 (3)C10—C11—C12—C130.3 (4)
C1—C6—C7—O1136.9 (3)C11—C12—C13—C142.5 (4)
C5—C6—C7—O134.5 (4)C11—C12—C13—C16176.0 (3)
C1—C6—C7—C842.0 (4)C12—C13—C14—C152.4 (4)
C5—C6—C7—C8146.6 (3)C16—C13—C14—C15176.1 (3)
O1—C7—C8—C9154.8 (3)C13—C14—C15—C100.5 (4)
C6—C7—C8—C926.3 (4)C11—C10—C15—C143.2 (4)
O1—C7—C8—Br120.4 (3)C9—C10—C15—C14175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.543.163 (3)124
C11—H11A···Br10.932.693.377 (3)131
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H13BrO
Mr301.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)8.7192 (2), 11.5819 (2), 26.4769 (6)
V3)2673.77 (10)
Z8
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.20 × 0.20 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.556, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
14370, 3893, 2462
Rint0.070
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.00
No. of reflections3893
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.543.163 (3)124.3
C11—H11A···Br10.932.693.377 (3)131.0
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Karthikeyan, M. S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657–663.  CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds